Do you want to publish a course? Click here

A Linear Programming Approach to Dynamical Equivalence, Linear Conjugacy, and the Deficiency One Theorem

95   0   0.0 ( 0 )
 Added by Matthew Johnston
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

The well-known Deficiency One Theorem gives structural conditions on a chemical reaction network under which, for any set of parameter values, the steady states of the corresponding mass action system may be easily characterized. It is also known, however, that mass action systems are not uniquely associated with reaction networks and that some representations may satisfy the Deficiency One Theorem while others may not. In this paper we present a mixed-integer linear programming framework capable of determining whether a given mass action system has a dynamically equivalent or linearly conjugate representation which has an underlying network satisfying the Deficiency One Theorem. This extends recent computational work determining linearly conjugate systems which are weakly reversible and have a deficiency of zero.



rate research

Read More

A numerically effective procedure for determining weakly reversible chemical reaction networks that are linearly conjugate to a known reaction network is proposed in this paper. The method is based on translating the structural and algebraic characteristics of weak reversibility to logical statements and solving the obtained set of linear (in)equalities in the framework of mixed integer linear programming. The unknowns in the problem are the reaction rate coefficients and the parameters of the linear conjugacy transformation. The efficacy of the approach is shown through numerical examples.
In the first part of this paper, we propose new optimization-based methods for the computation of preferred (dense, sparse, reversible, detailed and complex balanced) linearly conjugate reaction network structures with mass action dynamics. The developed methods are extensions of previously published results on dynamically equivalent reaction networks and are based on mixed-integer linear programming. As related theoretical contributions we show that (i) dense linearly conjugate networks define a unique super-structure for any positive diagonal state transformation if the set of chemical complexes is given, and (ii) the existence of linearly conjugate detailed balanced and complex balanced networks do not depend on the selection of equilibrium points. In the second part of the paper it is shown that determining dynamically equivalent realizations to a network that is structurally fixed but parametrically not can also be written and solved as a mixed-integer linear programming problem. Several examples illustrate the presented computation methods.
This paper discusses the odds problem, proposed by Bruss in 2000, and its variants. A recurrence relation called a dynamic programming (DP) equation is used to find an optimal stopping policy of the odds problem and its variants. In 2013, Buchbinder, Jain, and Singh proposed a linear programming (LP) formulation for finding an optimal stopping policy of the classical secretary problem, which is a special case of the odds problem. The proposed linear programming problem, which maximizes the probability of a win, differs from the DP equations known for long time periods. This paper shows that an ordinary DP equation is a modification of the dual problem of linear programming including the LP formulation proposed by Buchbinder, Jain, and Singh.
64 - Emmanuel Trelat 2020
The turnpike phenomenon stipulates that the solution of an optimal control problem in large time, remains essentially close to a steady-state of the dynamics, itself being the optimal solution of an associated static optimal control problem. Under general assumptions, it is known that not only the optimal state and the optimal control, but also the adjoint state coming from the application of the Pontryagin maximum principle, are exponentially close to a steady-state, except at the beginning and at the end of the time frame. In such results, the turnpike set is a singleton, which is a steady-state. In this paper, we establish a turnpike result for finite-dimensional optimal control problems in which some of the coordinates evolve in a monotone way, and some others are partial steady-states of the dynamics. We prove that the discrepancy between the optimal trajectory and the turnpike set is then linear, but not exponential: we thus speak of a linear turnpike theorem.
We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural `projection of a well studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program--the `smoothed approximate linear program--is distinct from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate substantially superior bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. Second, experiments with our approach on a challenging problem (the game of Tetris) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several ADP algorithms) by an order of magnitude.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا