Do you want to publish a course? Click here

Order-disorder transition in repulsive self-propelled particle systems

137   0   0.0 ( 0 )
 Added by Takayuki Hiraoka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the systems undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.



rate research

Read More

We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explicitly coarse graining the model, we show that interactions lead generically to the formation of a host of patterns, including moving clumps, active lanes and asters. This general mechanism could explain many of the patterns seen in recent experiments and simulations.
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to {peaks and depletions regions} in the density distribution of particles near the surface, in contrast to {exponentially-distributed run lengths}. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.
We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion. We show that the resulting dense phase contains gas bubbles distributed algebraically up to a typically large cutoff scale. At large enough system size and/or global density, all the gas may be contained inside the bubbles, at which point the system is microphase-separated with a finite cut-off bubble scale. We observe that the ordering is anomalous, with different dynamics for the coarsening of the dense phase and of the gas bubbles. This phenomenology is reproduced by a reduced bubble model that implements the basic idea of reverse Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)].
We study the large deviations of the distribution P(W_tau) of the work associated with the propulsion of individual active brownian particles in a time interval tau, in the region of the phase diagram where macroscopic phase separation takes place. P(W_tau) is characterised by two peaks, associated to particles in the gaseous and in the clusterised phases, and two separate non-convex branches. Accordingly, the generating function of W_tau cumulants displays a double singularity. We discuss the origin of such non-convex branches in terms of the peculiar dynamics of the system phases, and the relation between the observation time tau and the typical persistence times of the particles in the two phases.
Active diffusiophoresis - swimming through interaction with a self-generated, neutral, solute gradient - is a paradigm for autonomous motion at the micrometer scale. We study this propulsion mechanism within a linear response theory. Firstly, we consider several aspects relating to the dynamics of the swimming particle. We extend established analytical formulae to describe small swimmers, which interact with their environment on a finite lengthscale. Solute convection is also taken into account. Modeling of the chemical reaction reveals a coupling between the angular distribution of reactivity on the swimmer and the concentration field. This effect, which we term reaction induced concentration distortion, strongly influences the particle speed. Building on these insights, we employ irreversible, linear thermodynamics to formulate an energy balance. This approach highlights the importance of solute convection for a consistent treatment of the energetics. The efficiency of swimming is calculated numerically and approximated analytically. Finally, we define an efficiency of transport for swimmers which are moving in random directions. It is shown that this efficiency scales as the inverse of the macroscopic distance over which transport is to occur.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا