No Arabic abstract
We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion. We show that the resulting dense phase contains gas bubbles distributed algebraically up to a typically large cutoff scale. At large enough system size and/or global density, all the gas may be contained inside the bubbles, at which point the system is microphase-separated with a finite cut-off bubble scale. We observe that the ordering is anomalous, with different dynamics for the coarsening of the dense phase and of the gas bubbles. This phenomenology is reproduced by a reduced bubble model that implements the basic idea of reverse Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)].
We introduce a simple physical picture to explain the process of molecular sorting, whereby specific proteins are concentrated and distilled into submicrometric lipid vesicles in eukaryotic cells. To this purpose, we formulate a model based on the coupling of spontaneous molecular aggregation with vesicle nucleation. Its implications are studied by means of a phenomenological theory describing the diffusion of molecules towards multiple sorting centers that grow due to molecule absorption and are extracted when they reach a sufficiently large size. The predictions of the theory are compared with numerical simulations of a lattice-gas realization of the model and with experimental observations. The efficiency of the distillation process is found to be optimal for intermediate aggregation rates, where the density of sorted molecules is minimal and the process obeys simple scaling laws. Quantitative measures of endocytic sorting performed in primary endothelial cells are compatible with the hypothesis that these optimal conditions are realized in living cells.
We study the large deviations of the distribution P(W_tau) of the work associated with the propulsion of individual active brownian particles in a time interval tau, in the region of the phase diagram where macroscopic phase separation takes place. P(W_tau) is characterised by two peaks, associated to particles in the gaseous and in the clusterised phases, and two separate non-convex branches. Accordingly, the generating function of W_tau cumulants displays a double singularity. We discuss the origin of such non-convex branches in terms of the peculiar dynamics of the system phases, and the relation between the observation time tau and the typical persistence times of the particles in the two phases.
Chemotaxis receptors in E. coli form clusters at the cell poles and also laterally along the cell body, and this clustering plays an important role in signal transduction. Recently, experiments using flourrescence imaging have shown that, during cell growth, lateral clusters form at positions approximately periodically spaced along the cell body. In this paper, we demonstrate within a lattice model that such spatial organization could arise spontaneously from a stochastic nucleation mechanism. The same mechanism may explain the recent observation of periodic aggregates of misfolded proteins in E. coli.
We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the systems undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.
Continuum models with critical end points are considered whose Hamiltonian ${mathcal{H}}[phi,psi]$ depends on two densities $phi$ and $psi$. Field-theoretic methods are used to show the equivalence of the critical behavior on the critical line and at the critical end point and to give a systematic derivation of critical-end-point singularities like the thermal singularity $sim|{t}|^{2-alpha}$ of the spectator-phase boundary and the coexistence singularities $sim |{t}|^{1-alpha}$ or $sim|{t}|^{beta}$ of the secondary density $<psi>$. The appearance of a discontinuity eigenexponent associated with the critical end point is confirmed, and the mechanism by which it arises in field theory is clarified.