Do you want to publish a course? Click here

Narrative Smoothing: Dynamic Conversational Network for the Analysis of TV Series Plots

96   0   0.0 ( 0 )
 Added by Xavier Bost
 Publication date 2016
and research's language is English
 Authors Xavier Bost




Ask ChatGPT about the research

Modern popular TV series often develop complex storylines spanning several seasons, but are usually watched in quite a discontinuous way. As a result, the viewer generally needs a comprehensive summary of the previous season plot before the new one starts. The generation of such summaries requires first to identify and characterize the dynamics of the series subplots. One way of doing so is to study the underlying social network of interactions between the characters involved in the narrative. The standard tools used in the Social Networks Analysis field to extract such a network rely on an integration of time, either over the whole considered period, or as a sequence of several time-slices. However, they turn out to be inappropriate in the case of TV series, due to the fact the scenes showed onscreen alternatively focus on parallel storylines, and do not necessarily respect a traditional chronology. This makes existing extraction methods inefficient to describe the dynamics of relationships between characters, or to get a relevant instantaneous view of the current social state in the plot. This is especially true for characters shown as interacting with each other at some previous point in the plot but temporarily neglected by the narrative. In this article, we introduce narrative smoothing, a novel, still exploratory, network extraction method. It smooths the relationship dynamics based on the plot properties, aiming at solving some of the limitations present in the standard approaches. In order to assess our method, we apply it to a new corpus of 3 popular TV series, and compare it to both standard approaches. Our results are promising, showing narrative smoothing leads to more relevant observations when it comes to the characterization of the protagonists and their relationships. It could be used as a basis for further modeling the intertwined storylines constituting TV series plots.



rate research

Read More

126 - Xavier Bost 2018
Identifying and characterizing the dynamics of modern tv series subplots is an open problem. One way is to study the underlying social network of interactions between the characters. Standard dynamic network extraction methods rely on temporal integration, either over the whole considered period, or as a sequence of several time-slices. However, they turn out to be inappropriate in the case of tv series, because the scenes shown onscreen alternatively focus on parallel storylines, and do not necessarily respect a traditional chronology. In this article, we introduce Narrative Smoothing, a novel network extraction method taking advantage of the plot properties to solve some of their limitations. We apply our method to a corpus of 3 popular series, and compare it to both standard approaches. Narrative smoothing leads to more relevant observations when it comes to the characterization of the protagonists and their relationships, confirming its appropriateness to model the intertwined storylines constituting the plots.
Nonnegative Matrix Factorization (NMF) aims to factorize a matrix into two optimized nonnegative matrices and has been widely used for unsupervised learning tasks such as product recommendation based on a rating matrix. However, although networks between nodes with the same nature exist, standard NMF overlooks them, e.g., the social network between users. This problem leads to comparatively low recommendation accuracy because these networks are also reflections of the nature of the nodes, such as the preferences of users in a social network. Also, social networks, as complex networks, have many different structures. Each structure is a composition of links between nodes and reflects the nature of nodes, so retaining the different network structures will lead to differences in recommendation performance. To investigate the impact of these network structures on the factorization, this paper proposes four multi-level network factorization algorithms based on the standard NMF, which integrates the vertical network (e.g., rating matrix) with the structures of horizontal network (e.g., user social network). These algorithms are carefully designed with corresponding convergence proofs to retain four desired network structures. Experiments on synthetic data show that the proposed algorithms are able to preserve the desired network structures as designed. Experiments on real-world data show that considering the horizontal networks improves the accuracy of document clustering and recommendation with standard NMF, and various structures show their differences in performance on these two tasks. These results can be directly used in document clustering and recommendation systems.
Increased data gathering capacity, together with the spread of data analytics techniques, has prompted an unprecedented concentration of information related to the individuals preferences in the hands of a few gatekeepers. In the present paper, we show how platforms performances still appear astonishing in relation to some unexplored data and networks properties, capable to enhance the platforms capacity to implement steering practices by means of an increased ability to estimate individuals preferences. To this end, we rely on network science whose analytical tools allow data representations capable of highlighting relationships between subjects and/or items, extracting a great amount of information. We therefore propose a measure called Network Information Patrimony, considering the amount of information available within the system and we look into how platforms could exploit data stemming from connected profiles within a network, with a view to obtaining competitive advantages. Our measure takes into account the quality of the connections among nodes as the one of a hypothetical user in relation to its neighbourhood, detecting how users with a good neighbourhood -- hence of a superior connections set -- obtain better information. We tested our measures on Amazons instances, obtaining evidence which confirm the relevance of information extracted from nodes neighbourhood in order to steer targeted users.
150 - Xavier Bost 2019
Todays popular TV series tend to develop continuous, complex plots spanning several seasons, but are often viewed in controlled and discontinuous conditions. Consequently, most viewers need to be re-immersed in the story before watching a new season. Although discussions with friends and family can help, we observe that most viewers make extensive use of summaries to re-engage with the plot. Automatic generation of video summaries of TV series complex stories requires, first, modeling the dynamics of the plot and, second, extracting relevant sequences. In this paper, we tackle plot modeling by considering the social network of interactions between the characters involved in the narrative: substantial, durable changes in a major characters social environment suggest a new development relevant for the summary. Once identified, these major stages in each characters storyline can be used as a basis for completing the summary with related sequences. Our algorithm combines such social network analysis with filmmaking grammar to automatically generate character-oriented video summaries of TV series from partially annotated data. We carry out evaluation with a user study in a real-world scenario: a large sample of viewers were asked to rank video summaries centered on five characters of the popular TV series Game of Thrones, a few weeks before the new, sixth season was released. Our results reveal the ability of character-oriented summaries to re-engage viewers in television series and confirm the contributions of modeling the plot content and exploiting stylistic patterns to identify salient sequences.
In recent years, network embedding methods have garnered increasing attention because of their effectiveness in various information retrieval tasks. The goal is to learn low-dimensional representations of vertexes in an information network and simultaneously capture and preserve the network structure. Critical to the performance of a network embedding method is how the edges/vertexes of the network is sampled for the learning process. Many existing methods adopt a uniform sampling method to reduce learning complexity, but when the network is non-uniform (i.e. a weighted network) such uniform sampling incurs information loss. The goal of this paper is to present a generalized vertex sampling framework that works seamlessly with most existing network embedding methods to support weighted instead of uniform vertex/edge sampling. For efficiency, we propose a delicate sequential vertex-to-context graph data structure, such that sampling a training pair for learning takes only constant time. For scalability and memory efficiency, we design the graph data structure in a way that keeps space consumption low without requiring additional space. In addition to implementing existing network embedding methods, the proposed framework can be used to implement extensions that feature high-order proximity modeling and weighted relation modeling. Experiments conducted on three datasets, including a commercial large-scale one, verify the effectiveness and efficiency of the proposed weighted network embedding methods on a variety of tasks, including word similarity search, multi-label classification, and item recommendation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا