Do you want to publish a course? Click here

A Method to improve line flux and redshift measurements with narrowband filters

160   0   0.0 ( 0 )
 Added by Johannes Zabl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

High redshift star-forming galaxies are discovered routinely through a flux excess in narrowband filters (NB) caused by an emission line. In most cases, the width of such filters is broad compared to typical line widths, and the throughput of the filters varies substantially within the bandpass. This leads to substantial uncertainties in redshifts and fluxes that are derived from the observations with one specific NB. In this work we demonstrate that the uncertainty in measured line parameters can be sharply reduced by using repeated observations of the same target field with filters that have slightly different transmittance curves. Such data are routinely collected with some large field imaging cameras that use multiple detectors and a separate filter for each of the detectors. An example is the NB118 data from ESOs VISTA InfraRed CAMera (VIRCAM). We carefully developed and characterized this method to determine more accurate redshift and line flux estimates from the ratio of apparent fluxes measured from observations in different narrowband filters and several matching broadband filters. Then, we tested the obtainable quality of parameter estimation both on simulated and actual observations for the example of Ha in the VIRCAM NB118 filters combined with broadband data in Y, J, H. We find that by using this method, the errors in the measured lines fluxes can be reduced up to almost an order of magnitude and that an accuracy in wavelength of better than 1nm can be achieved with the ~13nm wide NB118 filters.



rate research

Read More

We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose: (i) that the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions; and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) recovered redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in an efficient and robust manner. Particularly, SORT redshifts are able to recover the distinctive features of the cosmic web and can provide unbiased measurement of the two-point correlation function on scales > 4 Mpc/h. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.
In this white paper, we present the scientific cases for adding narrowband optical filters to the Large Synoptic Survey Telescope (LSST). LSST is currently planning to observe the southern sky in 6 broadband optical filters. Three of the four LSST science themes would benefit from adding narrowband filter observations. We discuss the technical considerations of using narrowband filters with the LSST and lay out the scientific impact that would result on the study of AGB stars, emission line nebula (e.g., supernova remnants and planetary nebulae), photometric redshifts of galaxies, and the determination of stellar parameters.
Large photometric surveys provide a rich source of observations of quiescent galaxies, including a surprisingly large population at z>1. However, identifying large, but clean, samples of quiescent galaxies has proven difficult because of their near-degeneracy with interlopers such as dusty, star-forming galaxies. We describe a new technique for selecting quiescent galaxies based upon t-distributed stochastic neighbor embedding (t-SNE), an unsupervised machine learning algorithm for dimensionality reduction. This t-SNE selection provides an improvement both over UVJ, removing interlopers which otherwise would pass color selection, and over photometric template fitting, more strongly towards high redshift. Due to the similarity between the colors of high- and low-redshift quiescent galaxies, under our assumptions t-SNE outperforms template fitting in 63% of trials at redshifts where a large training sample already exists. It also may be able to select quiescent galaxies more efficiently at higher redshifts than the training sample.
Quantum noise sets a fundamental limit to the sensitivity of high-precision measurements. Suppressing it can be achieved by using non-classical states and quantum filters, which modify both the noise and signal response. We find a novel approach to realising quantum filters directly from their frequency-domain transfer functions, utilising techniques developed by the quantum control community. It not only allows us to construct quantum filters that defy intuition, but also opens a path towards the systematic design of optimal quantum measurement devices. As an illustration, we show a new optical realisation of an active unstable filter with anomalous dispersion, proposed for improving the quantum-limited sensitivity of gravitational-wave detectors.
312 - Y. D. Mayya 2012
We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field of view of OSIRIS (8x8), the change in the wavelength across the field (~80 Ang) and the long-tail of Tunable Filter (TF) spectral response function, are hindrances for obtaining accurate flux calibrated emission-line maps of extended sources. The purpose of this article is to demonstrate that emission-line maps useful for diagnostics of nebula can be generated over the entire field of view of OSIRIS, if we make use of theoretically well-understood characteristics of TFs. We have successfully generated the flux-calibrated images of the nearby, large late-type spiral galaxy M101 in the emission lines of Halpha, [NII]6583, [SII]6716 and [SII]6731. We find that the present uncertainty in setting the central wavelength of TFs (~1 Ang), is the biggest source of error in the emission-line fluxes. By comparing the Halpha fluxes of HII regions in our images with the fluxes derived from Halpha images obtained using narrow-band filters, we estimate an error of ~11% in our fluxes. The flux calibration of the images was carried out by fitting the SDSS griz magnitudes of in-frame stars with the stellar spectra from the SDSS spectral database. This method resulted in an accuracy of 3% in flux calibration of any narrow-band image, which is as good as, if not better, to that is feasible using the observations of spectrophotometric standard stars. Thus time-consuming calibration images need not be taken. A user-friendly script under the IRAF environment was developed and is available on request.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا