No Arabic abstract
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux facilitates reconnection, and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the current sheet and the resulting tearing modes, then the x-line is run over and swallowed by the faster-moving following flux.
A prediction of the steady-state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of two of the widely examined asymmetric reconnection model [Cassak and Shay, Phys. Plasmas 14, 102114, 2007] in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case [Liu et al., Phys. Rev. Lett. 118, 085101, 2017], this work further suggests that this nearly universal number 0.1, essentially the normalized fast reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic (MHD)-scale constraints.
The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas.
The orientation and stability of the reconnection x-line in asymmetric geometry is studied using three-dimensional (3D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect. The resulting x-line has sufficient freedom to develop along an optimal orientation, and it remains laminar. Companion 2D simulations indicate that this x-line orientation maximizes the reconnection rate. The divergence of the non-gyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2D counterpart. We then design 3D simulations with one dimension being short to fix the x-line orientation, but long enough to allow the growth of the fastest growing oblique tearing modes. This numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes if it is externally (globally) forced to proceed along an orientation not favored by the local physics. The development of oblique structure easily leads to turbulence inside small periodic systems.
Using fully kinetic simulations, we study the x-line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through corresponding 2D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit can be explained by the physics of tearing instability.
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionless damping via resonant wave-particle interactions versus dissipation in small-scale current sheets in weakly collisional plasma turbulence. Current sheets form self-consistently from the wave-driven turbulence, and their filling fraction is well correlated to the electron heating rate. However, the weakly collisional nature of the simulation necessarily implies that the current sheets are not significantly dissipated via Ohmic dissipation. Rather, collisionless damping via the Landau resonance with the electrons is sufficient to account for the measured heating as a function of scale in the simulation, without the need for significant Ohmic dissipation. This finding suggests the possibility that the dissipation of the current sheets is governed by resonant wave-particle interactions and that the locations of current sheets correspond spatially to regions of enhanced heating.