Do you want to publish a course? Click here

Orientation of x-lines in asymmetric magnetic reconnection - mass ratio dependency

142   0   0.0 ( 0 )
 Added by Yi-Hsin Liu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using fully kinetic simulations, we study the x-line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through corresponding 2D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit can be explained by the physics of tearing instability.



rate research

Read More

The orientation and stability of the reconnection x-line in asymmetric geometry is studied using three-dimensional (3D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect. The resulting x-line has sufficient freedom to develop along an optimal orientation, and it remains laminar. Companion 2D simulations indicate that this x-line orientation maximizes the reconnection rate. The divergence of the non-gyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2D counterpart. We then design 3D simulations with one dimension being short to fix the x-line orientation, but long enough to allow the growth of the fastest growing oblique tearing modes. This numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes if it is externally (globally) forced to proceed along an orientation not favored by the local physics. The development of oblique structure easily leads to turbulence inside small periodic systems.
314 - Yi-Hsin Liu , Michael Hesse 2016
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux facilitates reconnection, and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the current sheet and the resulting tearing modes, then the x-line is run over and swallowed by the faster-moving following flux.
The spreading of the X-line out of the reconnection plane under a strong guide field is investigated using large-scale three-dimensional (3D) particle-in-cell (PIC) simulations in asymmetric magnetic reconnection. A simulation with a thick, ion-scale equilibrium current sheet (CS) reveals that the X-line spreads at the ambient ion/electron drift speeds, significantly slower than the Alfven speed based on the guide field $V_{Ag}$. Additional simulations with a thinner, sub-ion-scale CS show that the X-line spreads at $V_{Ag}$ (Alfvenic spreading), much higher than the ambient species drifts. An Alfvenic signal consistent with kinetic Alfven waves develops and propagates, leading to CS thinning and extending, which then results in reconnection onset. The continuous onset of reconnection in the signal propagation direction manifests as Alfvenic X-line spreading. The strong dependence on the CS thickness of the spreading speeds, and the X-line orientation are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that $gamma/Omega_{ci}gtrsimmathcal{O}(1)$, Alfvenic X-line spreading can take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. A key implications is that the magnetopause CS is typically too thick for Alfvenic X-line spreading to effectively take place.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا