No Arabic abstract
Relational datasets are being generated at an alarmingly rapid rate across organizations and industries. Compressing these datasets could significantly reduce storage and archival costs. Traditional compression algorithms, e.g., gzip, are suboptimal for compressing relational datasets since they ignore the table structure and relationships between attributes. We study compression algorithms that leverage the relational structure to compress datasets to a much greater extent. We develop Squish, a system that uses a combination of Bayesian Networks and Arithmetic Coding to capture multiple kinds of dependencies among attributes and achieve near-entropy compression rate. Squish also supports user-defined attributes: users can instantiate new data types by simply implementing five functions for a new class interface. We prove the asymptotic optimality of our compression algorithm and conduct experiments to show the effectiveness of our system: Squish achieves a reduction of over 50% in storage size relative to systems developed in prior work on a variety of real datasets.
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Acting on time-critical events by processing ever growing social media or news streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Continuous queries or techniques to search for rare events that typically arise in monitoring applications have been studied extensively for relational databases. This work is dedicated to answer the question that emerges naturally: how can we efficiently execute a continuous query on a dynamic graph? This paper presents an exact subgraph search algorithm that exploits the temporal characteristics of representative queries for online news or social media monitoring. The algorithm is based on a novel data structure called the Subgraph Join Tree (SJ-Tree) that leverages the structural and semantic characteristics of the underlying multi-relational graph. The paper concludes with extensive experimentation on several real-world datasets that demonstrates the validity of this approach.
Financial transactions, internet search, and data analysis are all placing increasing demands on databases. SQL, NoSQL, and NewSQL databases have been developed to meet these demands and each offers unique benefits. SQL, NoSQL, and NewSQL databases also rely on different underlying mathematical models. Polystores seek to provide a mechanism to allow applications to transparently achieve the benefits of diverse databases while insulating applications from the details of these databases. Integrating the underlying mathematics of these diverse databases can be an important enabler for polystores as it enables effective reasoning across different databases. Associative arrays provide a common approach for the mathematics of polystores by encompassing the mathematics found in different databases: sets (SQL), graphs (NoSQL), and matrices (NewSQL). Prior work presented the SQL relational model in terms of associative arrays and identified key mathematical properties that are preserved within SQL. This work provides the rigorous mathematical definitions, lemmas, and theorems underlying these properties. Specifically, SQL Relational Algebra deals primarily with relations - multisets of tuples - and operations on and between these relations. These relations can be modeled as associative arrays by treating tuples as non-zero rows in an array. Operations in relational algebra are built as compositions of standard operations on associative arrays which mirror their matrix counterparts. These constructions provide insight into how relational algebra can be handled via array operations. As an example application, the composition of two projection operations is shown to also be a projection, and the projection of a union is shown to be equal to the union of the projections.
Causal inference is at the heart of empirical research in natural and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortunately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in statistical studies and social sciences. However, existing methods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world settings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions and specifying causal queries using simple Datalog-like rules.CaRL provides a foundation for inferring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.