Do you want to publish a course? Click here

Electron heating via the self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas

96   0   0.0 ( 0 )
 Added by Zoltan Donko
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The self-excitation of Plasma Series Resonance (PSR) oscillations plays an important role in the electron heating dynamics in Capacitively Coupled Radio Frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the Electrical Asymmetry Effect, i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge-voltage relation of the plasma sheaths deviates from a simple quadratic behavior and if (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of the PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations.



rate research

Read More

112 - J. Schulze , Z. Donko , A. Derzsi 2016
We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outside the electrode sheaths, space and time resolved within the RF period. Electrons are found to be heated by strong ambipolar electric fields outside the sheath during the phase of sheath expansion in addition to classical sheath expansion heating. By tracing individual electrons we also show that ionization is primarily caused by electrons that collide with the expanding sheath edge multiple times during one phase of sheath expansion due to backscattering towards the sheath by collisions. A synergistic combination of these different heating events during one phase of sheath expansion is required to accelerate an electron to energies above the threshold for ionization. The ambipolar electric field outside the sheath is found to be time modulated due to a time modulation of the electron mean energy caused by the presence of sheath expansion heating only during one half of the RF period at a given electrode. This time modulation results in more electron heating than cooling inside the region of high electric field outside the sheath on time average. If an electric field reversal is present during sheath collapse, this time modulation and, thus, the asymmetry between the phases of sheath expansion and collapse will be enhanced. We propose that the ambipolar electron heating should be included in models describing electron heating in capacitive RF plasmas.
146 - Alessandro Zocco 2011
A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasma beta of order the electron-ion mass ratio. The model contains collisions and can be used both in the collisional and collisionless reconnection regimes. It includes gyrokinetic ions (not assumed cold) and allows for the topological rearrangement of the magnetic field lines by either resistivity or electron inertia, whichever predominates. The two-fluid dynamics are coupled to electron kinetics --- electrons are not assumed isothermal and are described by a reduced drift-kinetic equation. The model therefore allows for irreversibility and conversion of magnetic energy into electron heat via parallel phase mixing in velocity space. An analysis of the exchanges between various forms of free energy and its conversion into electron heat is provided. It is shown how all relevant linear waves and regimes of the tearing instability (collisionless, semicollisional and fully resistive) are recovered in various limits of our model. An efficient way to simulate our equations numerically is proposed, via the Hermite representation of the velocity space. It is shown that small scales in velocity space will form, giving rise to a shallow Hermite-space spectrum, whence it is inferred that, for steady-state or sufficiently slow dynamics, the electron heating rate will remain finite in the limit of vanishing collisionality.
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
In this work, we analyze the creation of the discharge asymmetry and the concomitant formation of the DC self-bias voltage in capacitively coupled radio frequency plasmas driven by multi-frequency waveforms, as a function of the electrode surface characteristics. For this latter, we consider and vary the coefficients that characterize the elastic reflection of the electrons from the surfaces and the ion-induced secondary electron yield. Our investigations are based on Particle-in-Cell/Monte Carlo Collision simulations of the plasma and on a model that aids the understanding of the computational results. Electron reflection from the electrodes is found to affect slightly the discharge asymmetry in the presence of multi-frequency excitation, whereas secondary electrons cause distinct changes to the asymmetry of the plasma as a function of the phase angle between the harmonics of the driving voltage waveform and as a function the number of these harmonics.
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا