No Arabic abstract
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
Electron dynamics in Electron Cyclotron Resonance Ion Source is numerically simulated by using Particle-In-Cell code combined with simulations of the ion dynamics. Mean electron energies are found to be around 70 keV close to values that are derived from spectra of X-ray emission out of the source. Electron life time is defined by losses of low-energy electrons created in ionizing collisions; the losses are regulated by electron heating rate, which depends on magnitude of the microwave electric field. Changes in ion confinement with variations in the microwave electric field and gas flow are simulated. Influence of electron dynamics on the afterglow and two-frequency heating effects is discussed.
The local magnetic field in a Penning-Malmberg trap is found by measuring the temperatures that result when electron plasmas are illuminated by microwaves pulses. Multiple heating resonances are observed as the pulse frequencies are swept. The many resonances are due to electron bounce and plasma rotation sidebands. The heating peak corresponding to the cyclotron frequency resonance is identified to determine the magnetic field. A new method for quickly preparing low density electron plasmas for destructive temperature measurements enables a rapid and automated scan of microwave frequencies. This technique can determine the magnetic field to high precision, obtaining an absolute accuracy better than $1,mathrm{ppm}$, and a relative precision of $26,mathrm{ppb}$. One important application is in situ magnetometry for antihydrogen-based tests of charge-parity-time symmetry and of the weak equivalence principle
Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10 % of the estimated total electron losses from the plasma.
A simple table-size ECR plasma generator operates in the ATOMKI without axial magnetic trap and without any particle extraction tool. Radial plasma confinement is ensured by a NdFeB hexapole. The table-top ECR is a simplified version of the 14 GHz ATOMKI-ECRIS. Plasma diagnostics experiments are planned to be performed at this device before installing the measurement setting at the big ECRIS. Recently, the plasma generator has been operated in pulsed RF mode in order to investigate the time evolution of the ECR plasma in two different ways. (1) The visible light radiation emitted by the plasma was investigated by the frames of a fast camera images with 1 ms temporal resolution. Since the visible light photographs are in strong correlation with the two-dimensional spatial distribution of the cold electron components of the plasma it can be important to understand better the transient processes just after the breakdown and just after the glow. (2) The time-resolved ion current on a specially shaped electrode was measured simultaneously in order to compare it with the visible light photographs. The response of the plasma was detected by changing some external setting parameters (gas pressure and microwave power) and was described in this paper.
We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as well as inelastic collisions. It is demonstrated that, depending on the initial conditions, the ionic component of the plasma may exhibit short-range order or even a superimposed long-range order resulting in concentric ion shells. In contrast to ionic plasmas confined in traps, the shell structures are built up from the center of the plasma cloud rather than from the periphery.