Do you want to publish a course? Click here

Far-infrared study of tracers of oxygen chemistry in diffuse clouds

122   0   0.0 ( 0 )
 Added by Helmut Wiesemeyer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The chemistry of the diffuse interstellar medium rests upon three pillars: exothermic ion-neutral reactions ( cold chemistry ), endothermic neutral-neutral reactions with significant activation barriers ( warm chemistry ), and reactions on the surfaces of dust grains. While warm chemistry becomes important in the shocks associated with turbulent dissipation regions, the main path for the formation of interstellar OH and H2O is that of cold chemistry. Aims. The aim of this study is to observationally confirm the association of atomic oxygen with both atomic and molecular gas phases, and to understand the measured abundances of OH and OH + as a function of the available reservoir of H2. Methods. We obtained absorption spectra of the ground states of OH, OH+ and OI with high-velocity resolution, with GREAT on-board SOFIA, and with the THz receiver at the APEX. We analyzed them along with ancillary spectra of HF and CH from HIFI. To deconvolve them from the hyperfine structure and to separate the blend that is due to various velocity components on the sightline, we fit model spectra consisting of an appropriate number of Gaussian profiles using a method combining simulated annealing with downhill simplex minimization. Together with HF and/or CH as a surrogate for H2, and HI $lambda$21 cm data, the molecular hydrogen fraction f^N_H2 = N(H 2)/(N(H) + 2N(H 2)) can be determined. We then investigated abundance ratios as a function of f^N_H2. Results. The column density of OI is correlated at a high significance with the amount of available molecular and atomic hydrogen, with an atomic oxygen abundance of $3 times 10 ^{-4}$ relative to H nuclei. While the velocities of the absorption features of OH and OH+ are loosely correlated and reflect the spiral arm crossings on the sightline, upon closer inspection they display an anticorrespondence. The arm-to-interarm density contrast is found to be higher in OH than in OH+. While both species can coexist, with a higher abundance in OH than in OH+, the latter is found less frequently in absence of OH than the other way around, which is a direct consequence of the rapid destruction of OH+ by dissociative recombination when not enough H2 is available. This conjecture has been substantiated by a comparison between the OH/OH+ ratio with f^N_H2, showing a clear correlation. The hydrogen abstraction reaction chain OH+ (H2,H) H2O+ (H2,H)H3O+ is confirmed as the pathway for the production of OH and H 2 O. Our estimate of the branching ratio of the dissociative recombination of H3O+ to OH and H2O is confined within the interval of 84 to 91%, which matches laboratory measurements (74 to 83%). -- A correlation between the linewidths and column densities of OH+ features is found to be significant with a false-alarm probability below 5%. Such a correlation is predicted by models of interstellar MHD turbulence. For OH the same correlation is found to be insignificant because there are more narrow absorption features. Conclusions. While it is difficult to assess the contributions of warm neutral-neutral chemistry to the observed abundances, it seems fair to conclude that the predictions of cold ion-neutral chemistry match the abundance patterns we observed.



rate research

Read More

One of the surprises of the Herschel mission was the detection of ArH+ towards the Crab Nebula in emission and in absorption towards strong Galactic background sources. Although these detections were limited to the first quadrant of the Galaxy, the existing data suggest that ArH+ ubiquitously and exclusively probes the diffuse atomic regions of the ISM. In this study, we extend the coverage of ArH+ to other parts of the Galaxy with new observations of its J = 1-0 transition along seven Galactic sight lines towards bright sub-mm continuum sources. We aim to benchmark its efficiency as a tracer of purely atomic gas by evaluating its correlation (or lack there of) with other well-known atomic and molecular gas tracers. The observations of ArH+ near 617.5 GHz were made feasible with the new, sensitive SEPIA660 receiver on the APEX 12 m telescope. The two sidebands of this receiver allowed us to observe p-H2O+ transitions of at 607.227 GHz simultaneously with the ArH+ line. By analysing the steady state chemistry of OH+ and o-H2O+, we derive on average a cosmic-ray ionisation rate (CRIR), of 2.3e-16 s^-1 towards the sight lines studied in this work. Using the derived values of the CRIR and the observed ArH+ abundances we constrain the molecular fraction of the gas traced by ArH+ to lie below 2e-2 with a median value of 8.8e-4. Combined, our observations of ArH+, OH+, H2O+, and CH probe different regimes of the ISM, from diffuse atomic to diffuse and translucent molecular clouds. Over Galactic scales, we see that the distribution of N(ArH+) is associated with that of N(H), particularly in the inner Galaxy with potentially even contributions from the warm neutral medium phase of atomic gas at larger galactocentric distances. We derive an average o/p-ratio for H2O+ of 2.1, which corresponds to a nuclear spin temperature of 41 K, consistent with the typical gas temperatures of diffuse clouds.
Massive stars play an important role in shaping the structure of galaxies. Infrared dark clouds (IRDCs), with their low temperatures and high densities, have been identified as the potential birthplaces of massive stars. In order to understand the formation processes of massive stars the physical and chemical conditions in infrared dark clouds have to be characterized. The goal of this paper is to investigate the chemical composition of a sample of southern infrared dark clouds. One important aspect of the observations is to check, if the molecular abuncances in IRDCs are similar to the low-mass pre-stellar cores, or whether they show signatures of more evolved evolutionary stages. We performed observations toward 15 IRDCs in the frequency range between 86 and 93 GHz using the 22-m Mopra radio telescope. We detect HNC, HCO$^+$ and HNC emission in all clouds and N$_2$H$^+$ in all IRDCs except one. In some clouds we detect SiO emission. Complicated shapes of the HCO$^+$ emission line profile are found in all IRDCs. Both signatures indicates the presence of infall and outflow motions and beginning of star formation activity, at least in some parts of the IRDCs. Where possible, we calculate molecular abundances and make a comparison with previously obtained values for low-mass pre-stellar cores and high-mass protostellar objects (HMPOs). We show a tendency for IRDCs to have molecular abundances similar to low-mass pre-stellar cores rather than to HMPOs abundances on the scale of our single-dish observations.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation field, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
We discuss the capability of AKARI in recovering diffuse far-infrared emission, and examine the achieved reliability. Critical issues in making images of diffuse emission are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics are the key to achieving sensitivity comparable to or better than that for point sources (< 20 -- 95 MJy sr-1). We describe current activity and progress toward the production of high quality images of the diffuse far-infrared emission using the AKARI all-sky survey data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا