No Arabic abstract
Aims. Study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser Active Galactic Nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with available physical quantities from VLBI mapping. Results. Most of the sources analyzed are heavily obscured, showing a column density in excess of $sim 10^{23}$ cm$^{-2}$. In particular, $79%$ are Compton-thick ($N_{rm H} > 1.5 times 10^{24}$ cm$^{-2}$). Using column densities measured by NuSTAR, with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, the torus dimensions can be predicted. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds connecting the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.
We present the 0.5 - 78 keV spectral analysis of 18 broad line AGN belonging to the INTEGRAL complete sample. Using simultaneous Swift-XRT and NuSTAR observations and employing a simple phenomenological model to fit the data, we measure with a good constraint the high energy cut-off in 13 sources, while we place lower limits on 5 objects. We found a mean high-energy cut-off of 111 keV (standard deviation = 45 keV) for the whole sample, in perfect agreement with what found in our previous work using non simultaneous observations and with what recently published using NuSTAR data. This work suggests that simultaneity of the observations in the soft and hard X-ray band is important but not always essential, especially if flux and spectral variability are properly accounted for. A lesser agreement is found when we compare our cut-off measurements with the ones obtained by Ricci et al. (2017) using Swift-BAT high energy data, finding that their values are systematically higher than ours. We have investigated whether a linear correlation exists between photon index and the cut-off and found a weak one, probably to be ascribed to the non perfect modelling of the soft part of the spectra, due to the poor statistical quality of the 2-10 keV X-ray data. No correlation is also found between the Eddington ratio and the cut-off, suggesting that only using high statistical quality broad-band spectra is it possible to verify the theoretical predictions and study the physical characteristics of the hot corona and its geometry.
We present NuSTAR hard X-ray (3-79 keV) observations of three Type 2 quasars at z ~ 0.4-0.5, optically selected from the Sloan Digital Sky Survey (SDSS). Although the quasars show evidence for being heavily obscured Compton-thick systems on the basis of the 2-10 keV to [OIII] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis: (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H; (2) we further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution (SED) analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H gtrsim 5 x 10^23 cm^-2. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low energy (2-10 keV) and high energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H gtrsim 10^24 cm^-2). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.
We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium (ICM) components. NuSTAR gives a source-dominated spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (Gamma~1.6-1.7) absorbed by a neutral column density of N_H~1.6x10^23 cm^-2. However, we also detect curvature in the hard (>10keV) spectrum resulting from reflection by Compton-thick matter out of our line-of-sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cutoff in the continuum source; the limit on the cutoff energy is E_cut>111keV (90% confidence). Interestingly, the absorbed power-law plus reflection model leaves residuals suggesting the absorption/emission from a fast (15,000-26,000km/s), high column-density (N_W>3x10^23 cm^-2), highly ionized (xi~2,500 erg cm/s) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.
We present two new NuSTAR observations of the narrow line Seyfert 1 (NLS1) galaxy Mrk 766 and give constraints on the two scenarios previously proposed to explain its spectrum and that of other NLS1s: relativistic reflection and partial covering. The NuSTAR spectra show a strong hard (>15 keV) X-ray excess, while simultaneous soft X-ray coverage of one of the observations provided by XMM-Newton constrains the ionised absorption in the source. The pure reflection model requires a black hole of high spin ($a>0.92$) viewed at a moderate inclination ($i=46^{+1}_{-4}$ degrees). The pure partial covering model requires extreme parameters: the cut-off of the primary continuum is very low ($22^{+7}_{-5}$ keV) in one observation and the intrinsic X-ray emission must provide a large fraction (75%) of the bolometric luminosity. Allowing a hybrid model with both partial covering and reflection provides more reasonable absorption parameters and relaxes the constraints on reflection parameters. The fractional variability reduces around the iron K band and at high energies including the Compton hump, suggesting that the reflected emission is less variable than the continuum.
We present the analysis of Chandra and NuSTAR spectra of NGC 4968, a local (D$sim$44 Mpc) 12$mu$m-selected Seyfert 2 galaxy, enshrouded within Compton-thick layers of obscuring gas. We find no evidence of variability between the Chandra and NuSTAR observations (separated by 2 years), and between the two NuSTAR observations (separated by 10 months). Using self-consistent X-ray models, we rule out the scenario where the obscuring medium is nearly spherical and uniform, contradicting the results implied by the $<$10 keV Chandra spectrum. The line-of-sight column density, from intervening matter between the source and observer that intercepts the intrinsic AGN X-ray emission, is well within the Compton-thick regime, with a minimum column density of $2times10^{24}$ cm$^{-2}$. The average global column density is high ($> 3times10^{23}$ cm$^{-2}$), with both Compton-thick and Compton-thin solutions permitted depending on the X-ray spectral model. The spectral models provide a range of intrinsic AGN continuum parameters and implied 2-10 keV luminosities ($L_{rm 2-10keV,intrinsic}$), where the higher end of $L_{rm 2-10keV,intrinsic}$ is consistent with expectations from the 12$mu$m luminosity ($L_{rm 2-10keV,intrinisc} sim 7times10^{42}$ erg s$^{-1}$). Compared with Compton-thick AGN previously observed by {it NuSTAR}, NGC 4968 is among the most intrinsically X-ray luminous. However, despite its close proximity and relatively high intrinsic X-ray luminosity, it is undetected by the 105 month Swift-BAT survey, underscoring the importance of multi-wavelength selection for obtaining the most complete census of the most hidden black holes.