Do you want to publish a course? Click here

NuSTAR Observations of Heavily Obscured Quasars at z ~ 0.5

256   0   0.0 ( 0 )
 Added by George Lansbury
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present NuSTAR hard X-ray (3-79 keV) observations of three Type 2 quasars at z ~ 0.4-0.5, optically selected from the Sloan Digital Sky Survey (SDSS). Although the quasars show evidence for being heavily obscured Compton-thick systems on the basis of the 2-10 keV to [OIII] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis: (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H; (2) we further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution (SED) analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H gtrsim 5 x 10^23 cm^-2. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low energy (2-10 keV) and high energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H gtrsim 10^24 cm^-2). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.



rate research

Read More

227 - D. Stern 2014
We report on a NuSTAR and XMM-Newton program that has observed a sample of three extremely luminous, heavily obscured WISE-selected AGN at z~2 in a broad X-ray band (0.1 - 79 keV). The parent sample, selected to be faint or undetected in the WISE 3.4um (W1) and 4.6um (W2) bands but bright at 12um (W3) and 22um (W4), are extremely rare, with only ~1000 so-called W1W2-dropouts across the extragalactic sky. Optical spectroscopy reveals typical redshifts of z~2 for this population, implying rest-frame mid-IR luminosities of L(6um)~6e46 erg/s and bolometric luminosities that can exceed L(bol)~1e14 L(sun). The corresponding intrinsic, unobscured hard X-ray luminosities are L(2-10)~4e45 erg/s for typical quasar templates. These are amongst the most luminous AGN known, though the optical spectra rarely show evidence of a broad-line region and the selection criteria imply heavy obscuration even at rest-frame 1.5um. We designed our X-ray observations to obtain robust detections for gas column densities N(H)<1e24 /cm2. In fact, the sources prove to be fainter than these predictions. Two of the sources were observed by both NuSTAR and XMM-Newton, with neither being detected by NuSTAR and one being faintly detected by XMM-Newton. A third source was observed only with XMM-Newton, yielding a faint detection. The X-ray data require gas column densities N(H)>1e24 /cm2, implying the sources are extremely obscured, consistent with Compton-thick, luminous quasars. The discovery of a significant population of heavily obscured, extremely luminous AGN does not conform to the standard paradigm of a receding torus, in which more luminous quasars are less likely to be obscured. If a larger sample conforms with this finding, then this suggests an additional source of obscuration for these extreme sources.
A primary aim of the Nuclear Spectroscopic Telescope Array (NuSTAR) mission is to find and characterize heavily obscured Active Galactic Nuclei (AGNs). Based on mid-infrared photometry from the Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of luminous obscured AGN (i.e., obscured quasars). Here we report NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and W. M. Keck Observatory. Optical diagnostics confirm that all four targets are AGNs. With NuSTAR hard X-ray observations, three of the four objects are undetected, while the fourth has a marginal detection. We confirm that these objects have observed hard X-ray (10-40 keV) luminosities at or below ~ 10^43 erg s^-1. We compare X-ray and IR luminosities to obtain estimates of the hydrogen column densities (N_H) based on the suppression of the hard X-ray emission. We estimate N_H of these quasars to be at or larger than 10^25 cm^-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys, and do not contribute significantly to the cosmic X-ray background. From the optical Balmer decrements, we found that our three extreme obscured targets lie in highly reddened host environments. This galactic extinction is not adequate to explain the more obscured AGN, but it may imply a different scale of obscuration in the galaxy.
The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z<1, the X-ray spectra can only be reliably characterized using broad-band measurements which extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5e24 cm^-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z<0.5, have observed [OIII] luminosities in the range 8.4 < log (L_[OIII]/L_solar) < 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Amongst the nine candidate CTQSO2s, five are detected by NuSTAR in the high energy (8-24 keV) band: two are weakly detected at the ~ 3 sigma confidence level and three are strongly detected with sufficient counts for spectral modeling (>~ 90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic AGN properties are feasible, and we measure column densities ~2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ~10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of f_CT = 36^{+14}_{-12} %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.
78 - C. Ricci , R. J. Assef , D. Stern 2016
Hot, Dust-Obscured Galaxies (Hot DOGs), selected from the WISE all sky infrared survey, host some of the most powerful Active Galactic Nuclei (AGN) known, and might represent an important stage in the evolution of galaxies. Most known Hot DOGs are at $z> 1.5$, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 Hot DOG candidates at $zsim 1$, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift $z=1.009$, and an SED similar to higher redshift Hot DOGs for one of these objects, WISE J1036+0449 ($L_{rm,Bol}simeq 8times 10^{46}rm,erg,s^{-1}$), using data from Keck/LRIS and NIRSPEC, SDSS, and CSO. We find evidence of a broadened component in MgII, which, if due to the gravitational potential of the supermassive black hole, would imply a black hole mass of $M_{rm,BH}simeq 2 times 10^8 M_{odot}$, and an Eddington ratio of $lambda_{rm,Edd}simeq 2.7$. WISE J1036+0449 is the first Hot DOG detected by NuSTAR, and the observations show that the source is heavily obscured, with a column density of $N_{rm,H}simeq(2-15)times10^{23}rm,cm^{-2}$. The source has an intrinsic 2-10 keV luminosity of $sim 6times 10^{44}rm,erg,s^{-1}$, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that the other Hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of Hot DOGs. Hot DOGs at $zlesssim1$ could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional blowout phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of $10$ objects with XMM-Newton coverage to study the high-energy properties of HRQs at $left< L_{rm bol} right> = 10^{47.5}$ erg/s and $left< z right>= 2.5$. For the seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $left< L_{rm 2-10,keV} right> = 10^{45.1}$ erg/s, comparable to the most powerful X-ray quasars known. The gas column densities are $N_{rm H}=(1$-$8)times 10^{22}$ cm$^{-2}$, in agreement with the amount of dust extinction observed. The dust to gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-infrared ($L_{rm 6mu m}$) and bolometric luminosities ($L_{rm bol}$), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from $kappa_{rm bol}approx 50$-$3000$. The moderate absorption levels and accretion rates close to the Eddington limit ($left< lambda_{rm Edd} right>=1.06$) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the $N_{rm H}$-$lambda_{rm Edd}$ plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few $10^{5}$ years. The wider properties, including [OIII] narrow-line region kinematics, broadly agree with this interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا