Do you want to publish a course? Click here

Asymptotic arbitrage in fractional mixed markets

56   0   0.0 ( 0 )
 Added by Fernando Cordero
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider a family of mixed processes given as the sum of a fractional Brownian motion with Hurst parameter $Hin(3/4,1)$ and a multiple of an independent standard Brownian motion, the family being indexed by the scaling factor in front of the Brownian motion. We analyze the underlying markets with methods from large financial markets. More precisely, we show the existence of a strong asymptotic arbitrage (defined as in Kabanov and Kramkov [Finance Stoch. 2(2), 143--172 (1998)]) when the scaling factor converges to zero. We apply a result of Kabanov and Kramkov [Finance Stoch. 2(2), 143--172 (1998)] that characterizes the notion of strong asymptotic arbitrage in terms of the entire asymptotic separation of two sequences of probability measures. The main part of the paper consists of proving the entire separation and is based on a dichotomy result for sequences of Gaussian measures and the concept of relative entropy.



rate research

Read More

We study, from the perspective of large financial markets, the asymptotic arbitrage opportunities in a sequence of binary markets approximating the fractional Black-Scholes model. This approximating sequence was introduced by Sottinen and named fractional binary market. The large financial market under consideration does not satisfy the standard assumptions of the theory of asymptotic arbitrage. For this reason, we follow a constructive approach to show first that a strong type of asymptotic arbitrage exists in the large market without transaction costs. Indeed, with the help of an appropriate version of the law of large numbers and a stopping time procedure, we construct a sequence of self-financing strategies, which leads to the desired result. Next, we introduce, in each small market, proportional transaction costs, and we construct, following a similar argument, a sequence of self-financing strategies providing a strong asymptotic arbitrage when the transaction costs converge fast enough to 0.
The goal of this paper is to prove a result conjectured in Follmer and Schachermayer [FS07], even in slightly more general form. Suppose that S is a continuous semimartingale and satisfies a large deviations estimate; this is a particular growth condition on the mean-variance tradeoff process of S. We show that S then allows asymptotic exponential arbitrage with exponentially decaying failure probability, which is a strong and quantitative form of long-term arbitrage. In contrast to Follmer and Schachermayer [FS07], our result does not assume that S is a diffusion, nor does it need any ergodicity assumption.
To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. This process generalizes both the well known mixed fractional Brownian motion introduced by Cheridito [10] and the generalized fractional Brownian motion introduced by Zili [31]. We study its main stochastic properties, its non-Markovian and non-stationarity characteristics and the conditions under which it is not a semimartingale. We prove the long range dependence properties of this process.
We study the asymptotic behaviour of a class of small-noise diffusions driven by fractional Brownian motion, with random starting points. Different scalings allow for different asymptotic properties of the process (small-time and tail behaviours in particular). In order to do so, we extend some results on sample path large deviations for such diffusions. As an application, we show how these results characterise the small-time and tail estimates of the implied volatility for rough volatility models, recently proposed in mathematical finance.
This paper provides yet another look at the mixed fractional Brownian motion (fBm), this time, from the spectral perspective. We derive an approximation for the eigenvalues of its covariance operator, asymptotically accurate up to the second order. This in turn allows to compute the exact $L_2$-small ball probabilities, previously known only at logarithmic precision. The obtained expressions show an interesting stratification of scales, which occurs at certain values of the Hurst parameter of the fractional component. Some of them have been previously encountered in other problems involving such mixtures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا