Do you want to publish a course? Click here

Secure Index Coding: Existence and Construction

225   0   0.0 ( 0 )
 Added by Lawrence Ong
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We investigate the construction of weakly-secure index codes for a sender to send messages to multiple receivers with side information in the presence of an eavesdropper. We derive a sufficient and necessary condition for the existence of index codes that are secure against an eavesdropper with access to any subset of messages of cardinality $t$, for any fixed $t$. In contrast to the benefits of using random keys in secure network coding, we prove that random keys do not promote security in three classes of index-coding instances.



rate research

Read More

We extend the equivalence between network coding and index coding by Effros, El Rouayheb, and Langberg to the secure communication setting in the presence of an eavesdropper. Specifically, we show that the most gener
A code equivalence between index coding and network coding was established, which shows that any index-coding instance can be mapped to a network-coding instance, for which any index code can be translated to a network code with the same decoding-error performance, and vice versa. Also, any network-coding instance can be mapped to an index-coding instance with a similar code translation. In this paper, we extend the equivalence to secure index coding and secure network coding, where eavesdroppers are present in the networks, and any code construction needs to guarantee security constraints in addition to decoding-error performance.
We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region.
We study the fundamental problem of index coding under an additional privacy constraint that requires each receiver to learn nothing more about the collection of messages beyond its demanded messages from the server and what is available to it as side information. To enable such private communication, we allow the use of a collection of independent secret keys, each of which is shared amongst a subset of users and is known to the server. The goal is to study properties of the key access structures which make the problem feasible and then design encoding and decoding schemes efficient in the size of the server transmission as well as the sizes of the secret keys. We call this the private index coding problem. We begin by characterizing the key access structures that make private index coding feasible. We also give conditions to check if a given linear scheme is a valid private index code. For up to three users, we characterize the rate region of feasible server transmission and key rates, and show that all feasible rates can be achieved using scalar linear coding and time sharing; we also show that scalar linear codes are sub-optimal for four receivers. The outer bounds used in the case of three users are extended to arbitrary number of users and seen as a generalized version of the well-known polymatroidal bounds for the standard non-private index coding. We also show that the presence of common randomness and private randomness does not change the rate region. Furthermore, we study the case where no keys are shared among the users and provide some necessary and sufficient conditions for feasibility in this setting under a weaker notion of privacy. If the server has the ability to multicast to any subset of users, we demonstrate how this flexibility can be used to provide privacy and characterize the minimum number of server multicasts required.
Symmetrical Multilevel Diversity Coding (SMDC) is a network compression problem introduced by Roche (1992) and Yeung (1995). In this setting, a simple separate coding strategy known as superposition coding was shown to be optimal in terms of achieving the minimum sum rate (Roche, Yeung, and Hau, 1997) and the entire admissible rate region (Yeung and Zhang, 1999) of the problem. This paper considers a natural generalization of SMDC to the secure communication setting with an additional eavesdropper. It is required that all sources need to be kept perfectly secret from the eavesdropper as long as the number of encoder outputs available at the eavesdropper is no more than a given threshold. First, the problem of encoding individual sources is studied. A precise characterization of the entire admissible rate region is established via a connection to the problem of secure coding over a three-layer wiretap network and utilizing some basic polyhedral structure of the admissible rate region. Building on this result, it is then shown that superposition coding remains optimal in terms of achieving the minimum sum rate for the general secure SMDC problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا