Do you want to publish a course? Click here

An Equivalence Between Secure Network and Index Coding

121   0   0.0 ( 0 )
 Added by Lawrence Ong
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We extend the equivalence between network coding and index coding by Effros, El Rouayheb, and Langberg to the secure communication setting in the presence of an eavesdropper. Specifically, we show that the most gener



rate research

Read More

A code equivalence between index coding and network coding was established, which shows that any index-coding instance can be mapped to a network-coding instance, for which any index code can be translated to a network code with the same decoding-error performance, and vice versa. Also, any network-coding instance can be mapped to an index-coding instance with a similar code translation. In this paper, we extend the equivalence to secure index coding and secure network coding, where eavesdroppers are present in the networks, and any code construction needs to guarantee security constraints in addition to decoding-error performance.
We investigate the construction of weakly-secure index codes for a sender to send messages to multiple receivers with side information in the presence of an eavesdropper. We derive a sufficient and necessary condition for the existence of index codes that are secure against an eavesdropper with access to any subset of messages of cardinality $t$, for any fixed $t$. In contrast to the benefits of using random keys in secure network coding, we prove that random keys do not promote security in three classes of index-coding instances.
We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region.
We study the fundamental problem of index coding under an additional privacy constraint that requires each receiver to learn nothing more about the collection of messages beyond its demanded messages from the server and what is available to it as side information. To enable such private communication, we allow the use of a collection of independent secret keys, each of which is shared amongst a subset of users and is known to the server. The goal is to study properties of the key access structures which make the problem feasible and then design encoding and decoding schemes efficient in the size of the server transmission as well as the sizes of the secret keys. We call this the private index coding problem. We begin by characterizing the key access structures that make private index coding feasible. We also give conditions to check if a given linear scheme is a valid private index code. For up to three users, we characterize the rate region of feasible server transmission and key rates, and show that all feasible rates can be achieved using scalar linear coding and time sharing; we also show that scalar linear codes are sub-optimal for four receivers. The outer bounds used in the case of three users are extended to arbitrary number of users and seen as a generalized version of the well-known polymatroidal bounds for the standard non-private index coding. We also show that the presence of common randomness and private randomness does not change the rate region. Furthermore, we study the case where no keys are shared among the users and provide some necessary and sufficient conditions for feasibility in this setting under a weaker notion of privacy. If the server has the ability to multicast to any subset of users, we demonstrate how this flexibility can be used to provide privacy and characterize the minimum number of server multicasts required.
Information-theoretic security is considered in the paradigm of network coding in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, also referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this two-part paper, we consider the problem of secure network coding when the information rate and the security level can change over time. In the current paper (i.e., Part I of the two-part paper), we focus on the problem for a fixed security level and a flexible rate. To efficiently solve this problem, we put forward local-encoding-preserving secure network coding, where a family of secure linear network codes (SLNCs) is called local-encoding-preserving if all the SLNCs in this family share a common local encoding kernel at each intermediate node in the network. We present an efficient approach for constructing upon an SLNC that exists a local-encoding-preserving SLNC with the same security level and the rate reduced by one. By applying this approach repeatedly, we can obtain a family of local-encoding-preserving SLNCs with a fixed security level and multiple rates. We also develop a polynomial-time algorithm for efficient implementation of this approach. Furthermore, it is proved that the proposed approach incurs no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. The result in this paper will be used as a building block for efficiently constructing a family of local-encoding-preserving SLNCs for all possible pairs of rate and security level, which will be discussed in the companion paper (i.e., Part II of the two-part paper).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا