No Arabic abstract
We consider the isotropic perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian ODEs are previously known. We derive simple relationships between the three generating functions, and show that all three generating functions are joint solutions of a common 12th order Fuchsian linear ODE. We find that the 8th order differential operators can each be rewritten as a direct sum of a direct product, with operators no larger than 3rd order. We give closed-form expressions for all the solutions of these operators in terms of $_2F_1$ hypergeometric functions with rational and algebraic arguments. The solutions of these linear differential operators can in fact be expressed in terms of two modular forms, since these $_2F_1$ hypergeometric functions can be expressed with two, rational or algebraic, pullbacks.
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we determine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis.
Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively based on the coherent-state representation and the position representation of osp(1j2).
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation. When trying to solve MPP instances to provable optimality by means of integer programming, an additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting additional geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that using a natural geometry-based sparsification yields results that are on average within 0.5% of the optimum.
We consider the product of n complex non-Hermitian, independent random matrices, each of size NxN with independent identically distributed Gaussian entries (Ginibre matrices). The joint probability distribution of the complex eigenvalues of the product matrix is found to be given by a determinantal point process as in the case of a single Ginibre matrix, but with a more complicated weight given by a Meijer G-function depending on n. Using the method of orthogonal polynomials we compute all eigenvalue density correlation functions exactly for finite N and fixed n. They are given by the determinant of the corresponding kernel which we construct explicitly. In the large-N limit at fixed n we first determine the microscopic correlation functions in the bulk and at the edge of the spectrum. After unfolding they are identical to that of the Ginibre ensemble with n=1 and thus universal. In contrast the microscopic correlations we find at the origin differ for each n>1 and generalise the known Bessel-law in the complex plane for n=2 to a new hypergeometric kernel 0_F_n-1.
We consider a system of anisotropic plates in the three-dimensional continuum, interacting via purely hard core interactions. We assume that the particles have a finite number of allowed orientations. In a suitable range of densities, we prove the existence of a uni-axial nematic phase, characterized by long range orientational order (the minor axes are aligned parallel to each other, while the major axes are not) and no translational order. The proof is based on a coarse graining procedure, which allows us to map the plate model into a contour model, and in a rigorous control of the resulting contour theory, via Pirogov-Sinai methods.