Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively based on the coherent-state representation and the position representation of osp(1j2).
The Clebsch-Gordan coefficients of the group SU(2) are shown to satisfy new inequalities. They are obtained using the properties of Shannon and Tsallis entropies. The inequalities associated with the Wigner 3-j symbols are obtained using the relation of Clebsch-Gordan coefficients with probability distributions interpreted either as distributions for composite systems or distributions for noncomposite systems. The new inequalities were found for Hahn polynomials and hypergeometric functions
We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Particularly, they are invariant under basis transformations of irreducible representations of both the group and its subgroup. We then impose on the embedding factors constraints, which relate them to their counterparts under complex conjugate and therefore restrict the phases of embedding factors. In some cases, the phase ambiguities are reduced to sign ambiguities. We describe the procedure of obtaining embedding factors and then calculate CG coefficients of the group mathcal{PSL}_{2}left(7right) in terms of embedding factors of its subgroups S_{4} and mathcal{T}_{7}.
We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well-suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).
Symbolic methods of umbral nature play an important and increasing role in the theory of special functions and in related fields like combinatorics. We discuss an application of these methods to the theory of lacunary generating functions for the Laguerre polynomials for which we give a number of new closed form expressions. We present furthermore the different possibilities offered by the method we have developed, with particular emphasis on their link to a new family of special functions and with previous formulations, associated with the theory of quasi monomials.
The generating function of the Bannai-Ito polynomials is derived using the fact that these polynomials are known to be essentially the Racah or $6j$ coefficients of the $mathfrak{osp}(1|2)$ Lie superalgebra. The derivation is carried in a realization of the recoupling problem in terms of three Dunkl oscillators.