Do you want to publish a course? Click here

A time domain experiment with Swift: monitoring of seven nearby galaxies

49   0   0.0 ( 0 )
 Added by Igor Andreoni
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aimed to detect a supernova (SN) shock breakout (SBO) with observations in time domain. The SBO marks the first escape of radiation from the blast wave that breaks through the photosphere of the star and launches the SN ejecta, and peaks in the ultraviolet and soft X-ray bands. The detection of a SBO allows determining the onset of the explosion with an accuracy from a few hours to a few seconds. Using the XRT and UVOT instruments onboard the Swift satellite we carried out a weekly cadenced, six months lasting monitoring of seven nearby (distance <50 Mpc) galaxies, namely NGC1084, NGC2207/IC2163, NGC2770, NGC4303/M61, NGC3147, NGC3690, NGC6754. We searched for variable/transient sources in the collected data. We found no evidence for a SN SBO event, but we discovered five objects located within the light of the sample galaxies that are variable in the X-ray and/or in the UV. Our sample galaxies are within the Universe volume that will be reached by the forthcoming advanced gravitational waves (GW) detectors (a-LIGO/a-Virgo), thus this work provides an example on how to carry out Swift surveys useful to detect the GW signal from SNe, and to detect counterparts to GW triggers.



rate research

Read More

We have observed seven nearby large angular sized galaxies at 0.33 GHz using GMRT with angular resolution of $sim10$ and sub-mJy sensitivity. Using archival higher frequency data at 1.4 or $sim$6 GHz, we have then determined their spatially resolved non-thermal spectrum. As a general trend, we find that the spectral indices are comparatively flat at the galaxy centres and gradually steepen with increasing galactocentric distances. Using archival far infrared (FIR) MIPS 70 ${mu} m$ data, we estimate the exponent of radio-FIR correlation. One of the galaxy (NGC 4826) was found to have an exponent of the correlation of $sim1.4$. Average exponent from 0.33 GHz data for the rest of the galaxies was 0.63$pm$0.06 and is significantly flatter than the exponent 0.78$pm$0.04 obtained using 1.4 GHz data. This indicates cosmic ray electron (CRe) propagation to have reduced the correlation between FIR and 0.33 GHz radio. Assuming a model of simple isotropic diffusion of CRe, we find that the scenario can explain the frequency dependent cosmic ray electron propagation length scales for only two galaxies. Invoking streaming instability could, however, explain the results for the majority of the remaining ones.
NASAs Swift satellite has completed ten years of amazing discoveries in time domain astronomy. Its primary mission is to chase gamma-ray bursts (GRBs), but due to its scheduling flexibility it has subsequently become a prime discovery machine for new types of behavior. The list of major discoveries in GRBs and other transients includes the long-lived X-ray afterglows and flares from GRBs, the first accurate localization of short GRBs, the discovery of GRBs at high redshift (z>8), supernova shock break-out from SN Ib, a jetted tidal disruption event, an ultra-long class of GRBs, high energy emission from flare stars, novae and supernovae with unusual characteristics, magnetars with glitches in their spin periods, and a short GRB with evidence of an accompanying kilonova. Swift has developed a dynamic synergism with ground based observatories. In a few years gravitational wave observatories will come on-line and provide exciting new transient sources for Swift to study.
Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with M_NUV < -18.4 AB mag and have high probabilities of hosting SNe (0.06 SN/yr per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R ~ 19.5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as 0.1 R_sun. The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16 in IMSNG galaxies) over 5 years, confirming our SN rate estimate of 0.06 SN/yr per galaxy.
The Swift Burst Alert Telescope (BAT) hard X-ray transient monitor tracks more than 700 galactic and extragalactic sources on time scales ranging from a single Swift pointing (approximately 20 minutes) to one day. The monitored sources include all objects from the Fermi LAT bright source list which are either identified or which have a 95% error confidence radius of less than eight arc minutes. We report on the detection statistics of these sources in the BAT monitor both before and after the launch of Fermi.
We report the results of a six-month Swift monitoring campaign of Ark120, a prototypical bare Seyfert1 galaxy. The lack of intrinsic absorption combined with the nearly contemporaneous coverage of the UV and X-ray bands makes it possible to investigate the link between the accretion disk and the Comptonization corona. Our observations confirm the presence of substantial temporal variability, with the X-rays characterized by large-amplitude flux changes on timescales of few days, while the variations in the UV bands are smoother on timescales of several weeks. The source also shows spectral variability with the X-ray spectrum steepening when the source is brighter. We do not detect any correlation between the UV flux and the X-ray spectral slope. A cross correlation analysis suggests positive delays between X-rays and the UV emission, favoring a scenario of disk reprocessing. Although the strength of the correlation is moderate with a delay not well constrained (7.5+-7 days), it is nevertheless indicative of a large disk reprocessing region, with a separation between the X-ray and the UV emitting regions of the order of 1000 rG. The Ark120 correlation results are in agreement with those obtained in similar monitoring studies. When combined together, the observations can be well described by a linear relation between the X-ray/UV delay and the black hole mass. Within the context of the simplest scenario where these delays correspond to light-travel times, the implied distance between the X-ray source and the UV disk reprocessing region is of the order of many hundreds of gravitational radii.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا