No Arabic abstract
We have observed seven nearby large angular sized galaxies at 0.33 GHz using GMRT with angular resolution of $sim10$ and sub-mJy sensitivity. Using archival higher frequency data at 1.4 or $sim$6 GHz, we have then determined their spatially resolved non-thermal spectrum. As a general trend, we find that the spectral indices are comparatively flat at the galaxy centres and gradually steepen with increasing galactocentric distances. Using archival far infrared (FIR) MIPS 70 ${mu} m$ data, we estimate the exponent of radio-FIR correlation. One of the galaxy (NGC 4826) was found to have an exponent of the correlation of $sim1.4$. Average exponent from 0.33 GHz data for the rest of the galaxies was 0.63$pm$0.06 and is significantly flatter than the exponent 0.78$pm$0.04 obtained using 1.4 GHz data. This indicates cosmic ray electron (CRe) propagation to have reduced the correlation between FIR and 0.33 GHz radio. Assuming a model of simple isotropic diffusion of CRe, we find that the scenario can explain the frequency dependent cosmic ray electron propagation length scales for only two galaxies. Invoking streaming instability could, however, explain the results for the majority of the remaining ones.
We present radio observations of ultraluminous infrared galaxies (ULIRGs) using the Giant Metrewave Radio Telescope (GMRT) and combine them with archival multi-frequency observations to understand whether ULIRGs are the progenitors of the powerful radio loud galaxies in the local Universe. ULIRGs are characterized by large infrared luminosities ($L_{IR}>$10$^{12}$L$odot$), large dust masses ($sim10^{8}M_{odot}$) and vigorous star formation (star formation rates $sim$10-100 $M_{odot}~$yr$^{-1}$). Studies show that they represent the end stages of mergers of gas-rich spiral galaxies. Their luminosity can be due to both starburst activity and active galactic nuclei (AGN). We study a sample of 13 ULIRGs that have optically identified AGN characteristics with 1.28~GHz GMRT observations. Our aim is to resolve any core-jet structures or nuclear extensions and hence examine whether the ULIRGs are evolving into radio loud ellipticals. Our deep, low frequency observations show marginal extension for only one source. However, the integrated radio spectra of 9 ULIRGs show characteristics that are similar to that of GPS/CSS/CSO/young radio sources. The estimated spectral ages are 0.4 to 20 Myr and indicate that they are young radio sources and possible progenitors of radio galaxies. Hence, we conclude that although most ULIRGs do not show kpc scale extended radio emission associated with nuclear activity, their radio spectral energy distributions do show signatures of young radio galaxies.
The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Using the measured 150MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Spectra of our galaxies are generally flatter at lower compared to higher frequencies but as there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990). According to our modelled radio maps for M51-like galaxies, the free-free absorption effects can be seen only below 30MHz and in the global spectra just below 20MHz, while in the spectra of starburst galaxies, like M82, the flattening due to absorption is instead visible up to higher frequencies of about 150MHz. Locally, within galactic disks, the absorption effects are distinctly visible in M51-like galaxies as spectral flattening around 100-200MHz in the face-on objects, and as turnovers in the edge-on ones, while in M82-like galaxies there are strong turnovers at frequencies above 700MHz, regardless of viewing angle. Our modelling suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects.
Observations of radio emission in about 10 per cent of ultra-cool dwarfs (UCDs) indicate the presence of strong, persistent magnetic fields in these stars. These results are in contrast to early theoretical expectations on fully-convective dynamos, and to other tracers of magnetic activity, such as H {alpha} and X-ray luminosity. Radio-frequency observations have been key to physically characterising UCD magnetospheres, although explaining the diverse behaviour within them remains challenging. Most radio-frequency studies of UCDs have been conducted in the 4-8 GHz band, where traditional radio interferometers are typically most sensitive. Hence, the nature of UCD radio emission at low frequencies ($lesssim 1.4,mathrm{GHz}$) remains relatively unexplored, but can probe optically thick emission, and regions of lower magnetic field strengths -- regimes not accessible to higher-frequency observations. In this work, we present the results from Giant Metrewave Radio Telescope observations of nine UCDs taken at $sim 610$ and $1300,mathrm{MHz}$. These are the first observations of UCDs in this frequency range to be published in the literature. Using these observations, we are able to constrain the coronal magnetic field strength and electron number density of one of the targets to $1 lesssim B lesssim 90,mathrm{G}$ and $4 lesssim log(N_e) lesssim 10$, respectively. We do not detect the flaring emission observed at higher frequencies, to a limit of a few millijanskys. These results show that some UCDs can produce low-frequency radio emission, and highlights the need for simultaneous multi-wavelength radio observations to tightly constrain the coronal and magnetospheric properties of these stars.
We report quasi-simultaneous GMRT observations of seven extragalactic radio sources at 150, 325, 610 and 1400 MHz, in an attempt to accurately define their radio continuum spectra, particularly at frequencies below the observed spectral turnover. We had previously identified these sources as candidates for a sharply inverted integrated radio spectrum whose slope is close to, or even exceeds $alpha_c$ = +2.5, the theoretical limit due to synchrotron self-absorption (SSA) in a source of incoherent synchrotron radiation arising from relativistic particles with the canonical (i.e., power-law) energy distribution. We find that four out of the seven candidates have an inverted radio spectrum with a slope close to or exceeding +2.0, while the critical spectral slope $alpha_c$ is exceeded in at least one case. These sources, together with another one or two reported in very recent literature, may well be the archetypes of an extremely rare class, from the standpoint of violation of the SSA limit in compact extragalactic radio sources. However, the alternative possibility that free-free absorption is responsible for their ultra-sharp spectral turnover cannot yet be discounted.
Using the Alternative Data Release of the TIFR GMRT Sky Survey (TGSS), we studied the low-frequency properties of FR0 radio galaxies, the large population of compact radio sources associated with red massive early-type galaxies revealed by surveys at 1.4 GHz. We considered TGSS observations from FR0CAT, a sample formed by 104 FR0s at z<0.05: all but one of them are covered by the TGSS, and 43 of them are detected above a 5 sigma limit of 17.5 mJy. No extended emission has been detected around the FR0s, corresponding to a luminosity limit of < 4 10^23 W/Hz over an area of 100 kpc x 100 kpc. All but eight FR0s have a flat or inverted spectral shape (alpha < 0.5) between 150 MHz and 1.4 GHz: this spectral behavior confirms the general paucity of optically thin extended emission within the TGSS beam, as is expected for their compact 1.4 GHz morphology. Data at 5 GHz were used to build their radio spectra, which are also generally flat at higher frequencies. By focusing on a sub-sample of FR0s with flux density > 50 mJy at 1.4 GHz, we found that ~75% of them have a convex spectrum, but with a smaller curvature than the more powerful gigahertz peaked-spectrum sources (GPS). The typical FR0s radio spectrum is better described by a gradual steepening toward high frequencies, rather than to a transition from an optically-thick to an optically-thin regime, possibly observed in only ~15% of the sample.