Do you want to publish a course? Click here

The SAMI Galaxy Survey: extraplanar gas, galactic winds, and their association with star formation history

158   0   0.0 ( 0 )
 Added by I-Ting Ho
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a sample of 40 local, main-sequence, edge-on disc galaxies using integral field spectroscopy with the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey to understand the link between properties of the extraplanar gas and their host galaxies. The kinematics properties of the extraplanar gas, including velocity asymmetries and increased dispersion, are used to differentiate galaxies hosting large-scale galactic winds from those dominated by the extended diffuse ionized gas. We find rather that a spectrum of diffuse gas-dominated to wind dominated galaxies exist. The wind-dominated galaxies span a wide range of star formation rates ($-1 lesssim log({rm SFR/M_{odot} yr^{-1}}) lesssim 0.5$) across the whole stellar mass range of the sample ($8.5 lesssim log({rm M_{*}/M_{odot}}) lesssim 11$). The wind galaxies also span a wide range in SFR surface densities ($10^{-3} textrm{--} 10^{-1.5}rm~M_{odot} ~yr^{-1}~kpc^{-2}$) that is much lower than the canonical threshold of $rm0.1~M_{odot} ~yr^{-1}~kpc^{-2}$. The wind galaxies on average have higher SFR surface densities and higher $rm Hdelta_A$ values than those without strong wind signatures. The enhanced $rm Hdelta_A$ indicates that bursts of star formation in the recent past are necessary for driving large-scale galactic winds. We demonstrate with Sloan Digital Sky Survey data that galaxies with high SFR surface density have experienced bursts of star formation in the recent past. Our results imply that the galactic winds revealed in our study are indeed driven by bursts of star formation, and thus probing star formation in the time domain is crucial for finding and understanding galactic winds.



rate research

Read More

We study the properties of kinematically disturbed galaxies in the SAMI Galaxy Survey using a quantitative criterion, based on kinemetry (Krajnovic et al.). The approach, similar to the application of kinemetry by Shapiro et al. uses ionised gas kinematics, probed by H{alpha} emission. By this method 23+/-7% of our 360-galaxy sub-sample of the SAMI Galaxy Survey are kinematically asymmetric. Visual classifications agree with our kinemetric results for 90% of asymmetric and 95% of normal galaxies. We find stellar mass and kinematic asymmetry are inversely correlated and that kinematic asymmetry is both more frequent and stronger in low-mass galaxies. This builds on previous studies that found high fractions of kinematic asymmetry in low mass galaxies using a variety of different methods. Concentration of star forma- tion and kinematic disturbance are found to be correlated, confirming results found in previous work. This effect is stronger for high mass galaxies (log(M*) > 10) and indicates that kinematic disturbance is linked to centrally concentrated star formation. Comparison of the inner (within 0.5Re) and outer H{alpha} equivalent widths of asymmetric and normal galaxies shows a small but significant increase in inner equivalent width for asymmetric galaxies.
We present the ~800 star formation rate maps for the SAMI Galaxy Survey based on H{alpha} emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H{beta}, [N II]/H{alpha}, [S II]/H{alpha}, and [O I]/H{alpha} line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main sequence population has centrally-concentrated star formation similar to late-type galaxies, while galaxies >3{sigma} below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
160 - G. Baume , G. Carraro , F. Comeron 2011
Context: The Ara OB1a association is a nearby complex in the fourth Galactic quadrant where a number of young/embedded star clusters are projected close to more evolved, intermediate age clusters. It is also rich in interstellar matter, and contains evidence of the interplay between massive stars and their surrounding medium, such as the rim HII region NGC 6188. Aims: We provide robust estimates of the fundamental parameters (age and distance) of the two most prominent stellar clusters, NGC 6167 and NGC 6193, that may be used as a basis for studing the star formation history of the region. Methods: The study is based on a photometric optical survey (UBVIHa) of NGC 6167 and NGC 6193 and their nearby field, complemented with public data from 2MASS-VVV, UCAC3, and IRAC-Spitzer in this region. Results: We produce a uniform photometric catalogue and estimate more robustly the fundamental parameters of NGC 6167 and NGC 6193, in addition to the IRAS 16375-4854 source. As a consequence, all of them are located at approximately the same distance from the Sun in the Sagittarius-Carina Galactic arm. However, the ages we estimate differ widely: NGC 6167 is found to be an intermediate-age cluster (20-30 Myr), NGC 6193 a very young one (1-5 Myr) with PMS, H? emitters and class II objects, and the IRAS 16375-4854 source is the youngest of the three containing several YSOs. Conclusions: These results support a picture in which Ara OB1a is a region where star formation has proceeded for several tens of Myr until the present. The difference in the ages of the different stellar groups can be interpreted as a consequence of a triggered star formation process. In the specific case of NGC 6193, we find evidence of possible non-coeval star formation.
We explore the radial distribution of star formation in galaxies in the SAMI Galaxy Survey as a function of their local group environment. Using a sample of galaxies in groups (with halo masses less than $ simeq 10^{14} , mathrm{M_{odot}}$) from the Galaxy And Mass Assembly Survey, we find signatures of environmental quenching in high-mass groups ($M_{G} > 10^{12.5} , mathrm{M_{odot}}$). The mean integrated specific star formation rate of star-forming galaxies in high-mass groups is lower than for galaxies in low-mass groups or that are ungrouped, with $Delta log(sSFR/mathrm{yr^{-1}}) = 0.45 pm 0.07$. This difference is seen at all galaxy stellar masses. In high-mass groups, star-forming galaxies more massive than $M_{*} sim 10^{10} , mathrm{M_{odot}}$ have centrally-concentrated star formation. These galaxies also lie below the star-formation main sequence, suggesting they may be undergoing outside-in quenching. Lower mass galaxies in high-mass groups do not show evidence of concentrated star formation. In groups less massive than $M_{G} = 10^{12.5} , mathrm{M_{odot}}$ we do not observe these trends. In this regime we find a modest correlation between centrally-concentrated star formation and an enhancement in total star formation rate, consistent with triggered star formation in these galaxies.
We present a detailed exploration of the stellar mass vs. gas-phase metallicity relation (MZR) using integral field spectroscopy data obtained from ~1000 galaxies observed by the SAMI Galaxy survey. These spatially resolved spectroscopic data allow us to determine the metallicity within the same physical scale (Reff) for different calibrators. The shape of the MZ relations is very similar between the different calibrators, while there are large offsets in the absolute values of the abundances. We confirm our previous results derived using the spatially resolved data provided by the CALIFA and MaNGA surveys: (1) we do not find any significant secondary relation of the MZR with either the star formation rate (SFR) nor the specific SFR (SFR/Mass) for any of the calibrators used in this study, based on the analysis of the {individual} residuals, (2) if there is a dependence with the SFR, it is weaker than the reported one ($r_csim -$0.3), it is confined to the low mass regime (M*<10$^9$Msun) or high SFR regimes, and it does not produce any significant improvement in the {description of the average population of galaxies. The aparent disagreement with published results based on single fiber spectroscopic data could be due to (i) the interpretation of the secondary relation itself, (ii) the lower number of objects sampled at the low mass regime by the current study, or (iii) the presence of extreme star-forming galaxies that drive the secondary relation in previous results
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا