Do you want to publish a course? Click here

The SAMI Galaxy Survey: Exploring the gas-phase Mass-Metallicity Relation

92   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed exploration of the stellar mass vs. gas-phase metallicity relation (MZR) using integral field spectroscopy data obtained from ~1000 galaxies observed by the SAMI Galaxy survey. These spatially resolved spectroscopic data allow us to determine the metallicity within the same physical scale (Reff) for different calibrators. The shape of the MZ relations is very similar between the different calibrators, while there are large offsets in the absolute values of the abundances. We confirm our previous results derived using the spatially resolved data provided by the CALIFA and MaNGA surveys: (1) we do not find any significant secondary relation of the MZR with either the star formation rate (SFR) nor the specific SFR (SFR/Mass) for any of the calibrators used in this study, based on the analysis of the {individual} residuals, (2) if there is a dependence with the SFR, it is weaker than the reported one ($r_csim -$0.3), it is confined to the low mass regime (M*<10$^9$Msun) or high SFR regimes, and it does not produce any significant improvement in the {description of the average population of galaxies. The aparent disagreement with published results based on single fiber spectroscopic data could be due to (i) the interpretation of the secondary relation itself, (ii) the lower number of objects sampled at the low mass regime by the current study, or (iii) the presence of extreme star-forming galaxies that drive the secondary relation in previous results



rate research

Read More

We investigate the Tully-Fisher Relation (TFR) for a morphologically and kine- matically diverse sample of galaxies from the SAMI Galaxy Survey using 2 dimensional spatially resolved Halpha velocity maps and find a well defined relation across the stellar mass range of 8.0 < log(M*) < 11.5. We use an adaptation of kinemetry to parametrise the kinematic Halpha asymmetry of all galaxies in the sample, and find a correlation between scatter (i.e. residuals off the TFR) and asymmetry. This effect is pronounced at low stellar mass, corresponding to the inverse relationship between stellar mass and kinematic asymmetry found in previous work. For galaxies with log(M*) < 9.5, 25 +/- 3% are scattered below the root mean square (RMS) of the TFR, whereas for galaxies with log(M*) > 9.5 the fraction is 10 +/- 1% We use simulated slits to directly compare our results with those from long slit spectroscopy and find that aligning slits with the photometric, rather than the kinematic, position angle, increases global scatter below the TFR. Further, kinematic asymmetry is correlated with misalignment between the photometric and kinematic position angles. This work demonstrates the value of 2D spatially resolved kinematics for accurate TFR studies; integral field spectroscopy reduces the underestimation of rotation velocity that can occur from slit positioning off the kinematic axis.
We present gas-phase metallicity and ionization parameter maps of 25 star-forming face-on spiral galaxies from the SAMI Galaxy Survey Data Release 1. Self-consistent metallicity and ionization parameter maps are calculated simultaneously through an iterative process to account for the interdependence of the strong emission line diagnostics involving ([OII]+[OIII])/H$beta$ (R23) and [OIII]/[OII] (O32). The maps are created on a spaxel-by-spaxel basis because HII regions are not resolved at the SAMI spatial resolution. We combine the SAMI data with stellar mass, star formation rate (SFR), effective radius (R$_e$), ellipticity, and position angles (PA) from the GAMA survey to analyze their relation to the metallicity and ionization parameter. We find a weak trend of steepening metallicity gradient with galaxy stellar mass, with values ranging from -0.03 to -0.20 dex/R$_e$. Only two galaxies show radial gradients in ionization parameter. We find that the ionization parameter has no significant correlation with either SFR, sSFR (specific star formation rate), or metallicity. For several individual galaxies we find structure in the ionization parameter maps suggestive of spiral arm features. We find a typical ionization parameter range of $7.0 < log(q) < 7.8$ for our galaxy sample with no significant overall structure. An ionization parameter range of this magnitude is large enough to caution the use of metallicity diagnostics which have not considered the effects of a varying ionization parameter distribution.
We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (textit{FastSound}) consisting of $sim$ 4,000 galaxies at $zsim1.4$ with significant H$alpha$ detection. We measure the gas-phase metallicity from the [N~{sc ii}]$lambda$6583/H$alpha$ emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation with star-formation rate is found. Our result at $zsim1.4$ is roughly in agreement with the fundamental metallicity relation at $zsim0.1$ with fiber aperture corrected star-formation rate. We detect significant [S~{sc ii}]$lambdalambda$6716,6731 emission lines from the composite spectra. The electron density estimated from the [S~{sc ii}]$lambdalambda$6716,6731 line ratio ranges from 10 -- 500 cm$^{-3}$, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N~{sc ii}]$lambda$6583/H$alpha$ vs. [S~{sc ii}]$lambdalambda$6716,6731/H$alpha$ is different from that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at $zsim1.4$ is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at $zsim1.4$ recalculated with this N/O enhancement taken into account decreases by 0.1 -- 0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{text{SFR}}$) as well as HI-gas mass (FMR$_{text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{text{SFR}}$ and FMR$_{text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$sigma$ mean scatter in the MZR to be 0.05 dex. The 1$sigma$ mean scatter in the FMR$_{text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{text{HI}}$. We also find that the FMR$_{text{HI}}$ is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML$_{text{SFR}}$) and HI-gas mass (FML$_{text{HI}}$). We find that the FML$_{text{HI}}$ relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However the 1$sigma$ scatter for the FML$_{text{HI}}$ relation is not improved over the FMR$_{text{HI}}$ scenario. This leads us to conclude that the FMR$_{text{HI}}$ is the best candidate for a physically motivated fundamental metallicity relation.
142 - Xiangcheng Ma 2015
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا