Do you want to publish a course? Click here

Exact diagonalization of Heisenberg $SU(N)$ chains in the fully symmetric and antisymmetric representations

49   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent experimental progress in the context of ultra-cold multi-color fermionic atoms in optical lattices, we have developed a method to exactly diagonalize the Heisenberg $SU(N)$ Hamiltonian with several particles per site living in a fully symmetric or antisymmetric representation of $SU(N)$. The method, based on the use of standard Young tableaux, takes advantage of the full $SU(N)$ symmetry, allowing one to work directly in each irreducible representations of the global $SU(N)$ group. Since the $SU(N)$ singlet sector is often much smaller than the full Hilbert space, this enables one to reach much larger system sizes than with conventional exact diagonalizations. The method is applied to the study of Heisenberg chains in the symmetric representation with two and three particles per site up to $N=10$ and up to 20 sites. For the length scales accessible to this approach, all systems except the Haldane chain ($SU(2)$ with two particles per site) appear to be gapless, and the central charge and scaling dimensions extracted from the results are consistent with a critical behaviour in the $SU(N)$ level $k$ Wess-Zumino-Witten universality class, where $k$ is the number of particles per site. These results point to the existence of a cross-over between this universality class and the asymptotic low-energy behavior with a gapped spectrum or a critical behavior in the $SU(N)$ level $1$ WZW universality class.



rate research

Read More

Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labelled by the set of {it standard Young tableaux} in which the matrix of the Heisenberg SU(N) model (the quantum permutation of N-color objects) takes an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of the singlet space on $n$ sites increases very fast with N, this formulation allows to extend exact diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method, we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for SU(8), and evidence in favor of a quantum liquid for SU(10).
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as well. In particular, we observe spinon confinement due to a next-nearest neighbor interaction in the SU(4) representation 10 spin chain.
The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow us to identify uniquely the Wess-Zumino-Witten models capturing the low energy sectors of the models we consider.
We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R{e}nyi entropy which equally allows for extraction of the central charge.
68 - Kyle Wamer , Ian Affleck 2020
One dimensional SU($n$) chains with the same irreducible representation $mathcal{R}$ at each site are considered. We determine which $mathcal{R}$ admit low-energy mappings to a $text{SU}(n)/[text{U}(1)]^{n-1}$ flag manifold sigma model, and calculate the topological angles for such theories. Generically, these models will have fields with both linear and quadratic dispersion relations; for each $mathcal{R}$, we determine how many fields of each dispersion type there are. Finally, for purely linearly-dispersing theories, we list the irreducible representations that also possess a $mathbb{Z}_n$ symmetry that acts transitively on the $text{SU}(n)/[text{U}(1)]^{n-1}$ fields. Such SU($n$) chains have an t Hooft anomaly in certain cases, allowing for a generalization of Haldanes conjecture to these novel representations. In particular, for even $n$ and for representations whose Young tableaux have two rows, of lengths $p_1$ and $p_2$ satisfying $p_1 ot=p_2$, we predict a gapless ground state when $p_1+p_2$ is coprime with $n$. Otherwise, we predict a gapped ground state that necessarily has spontaneously broken symmetry if $p_1+p_2$ is not a multiple of $n$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا