Do you want to publish a course? Click here

Flag manifold sigma models from SU($n$) chains

69   0   0.0 ( 0 )
 Added by Kyle Wamer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One dimensional SU($n$) chains with the same irreducible representation $mathcal{R}$ at each site are considered. We determine which $mathcal{R}$ admit low-energy mappings to a $text{SU}(n)/[text{U}(1)]^{n-1}$ flag manifold sigma model, and calculate the topological angles for such theories. Generically, these models will have fields with both linear and quadratic dispersion relations; for each $mathcal{R}$, we determine how many fields of each dispersion type there are. Finally, for purely linearly-dispersing theories, we list the irreducible representations that also possess a $mathbb{Z}_n$ symmetry that acts transitively on the $text{SU}(n)/[text{U}(1)]^{n-1}$ fields. Such SU($n$) chains have an t Hooft anomaly in certain cases, allowing for a generalization of Haldanes conjecture to these novel representations. In particular, for even $n$ and for representations whose Young tableaux have two rows, of lengths $p_1$ and $p_2$ satisfying $p_1 ot=p_2$, we predict a gapless ground state when $p_1+p_2$ is coprime with $n$. Otherwise, we predict a gapped ground state that necessarily has spontaneously broken symmetry if $p_1+p_2$ is not a multiple of $n$.



rate research

Read More

This review is dedicated to two-dimensional sigma models with flag manifold target spaces, which are generalizations of the familiar $CP^{n-1}$ and Grassmannian models. They naturally arise in the description of continuum limits of spin chains, and their phase structure is sensitive to the values of the topological angles, which are determined by the representations of spins in the chain. Gapless phases can in certain cases be explained by the presence of discrete t Hooft anomalies in the continuum theory. We also discuss integrable flag manifold sigma models, which provide a generalization of the theory of integrable models with symmetric target spaces. These models, as well as their deformations, have an alternative equivalent formulation as bosonic Gross-Neveu models, which proves useful for demonstrating that the deformed geometries are solutions of the renormalization group (Ricci flow) equations, as well as for the analysis of anomalies and for describing potential couplings to fermions.
We examine topological terms of $(2+1)$d sigma models and their consequences in the light of classifications of invertible quantum field theories utilizing bordism groups. In particular, we study the possible topological terms for the $U(N)/U(1)^N$ flag-manifold sigma model in detail. We argue that the Hopf-like term is absent, contrary to the expectation from a nontrivial homotopy group $pi_3(U(N)/U(1)^N)=mathbb{Z}$, and thus skyrmions cannot become anyons with arbitrary statistics. Instead, we find that there exist ${N(N-1)over 2}-1$ types of Chern-Simons terms, some of which can turn skyrmions into fermions, and we write down explicit forms of effective Lagrangians.
The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow us to identify uniquely the Wess-Zumino-Witten models capturing the low energy sectors of the models we consider.
We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R{e}nyi entropy which equally allows for extraction of the central charge.
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as well. In particular, we observe spinon confinement due to a next-nearest neighbor interaction in the SU(4) representation 10 spin chain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا