Do you want to publish a course? Click here

A Single Photon Can Simultaneously Excite Two or More Atoms

61   0   0.0 ( 0 )
 Added by Salvatore Savasta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider two separate atoms interacting with a single-mode optical resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between textit{one} photon and textit{two} atoms, via intermediate virtual states connected by counter-rotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission processes can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.



rate research

Read More

The coherent nonlinear process where a single photon simultaneously excites two or more two-level systems (qubits) in a single-mode resonator has recently been theoretically predicted. Here we explore the case where the two qubits are placed in different resonators in an array of two or three weakly coupled resonators. Investigating different setups and excitation schemes, we show that this process can still occur with a probability approaching one under specific conditions. The obtained results provide interesting insights into subtle causality issues underlying the simultaneous excitation processes of qubits placed in different resonators.
Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a Spatial Light Modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting detector (ICCD). We experimentally demonstrate selective addressing any location (symbol) in a 9072 size grid (alphabet) to achieve 10.5 bit of mutual information between the sender and receiver per detected photon. Our results set the stage for very-high-dimensional quantum information processing.
We demonstrate, both numerically and analytically, that it is possible to generate two photons from one and only one photon. We characterize the output two photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that close to perfect downconversion with efficiency over 99% is reachable using state-of-the-art Waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three level atom is a transmon.
We recently demonstrated that strings of trapped atoms inside a standing wave optical dipole trap can be rearranged using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. This technique allows us to actively set the interatomic separations on the scale of the individual trapping potential wells. Here, we use such a distance-control operation to insert two atoms into the same potential well. The detected success rate of this manipulation is 16(+4/-3) %, in agreement with the predictions of a theoretical model based on our independently determined experimental parameters.
We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {it et al.}, Nature {bf 413}, 495 (2001).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا