Do you want to publish a course? Click here

Photon-Mediated Interaction between Two Distant Atoms

107   0   0.0 ( 0 )
 Added by Stefan Rist
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {it et al.}, Nature {bf 413}, 495 (2001).



rate research

Read More

Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum conductors. Here, we use such an architecture to couple two quantum dot circuits . Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
We place two atoms in quantum superposition states and observe coherent phase evolution for 3.4x10^15 cycles. Correlation signals from the two atoms yield information about their relative phase even after the probe radiation has decohered. This technique was applied to a frequency comparison of two Al+ ions, where a fractional uncertainty of 3.7+1.0-0.8x10^-16/sqrt{tau/s} was observed. Two measures of the Q-factor are reported: The Q-factor derived from quantum coherence is 3.4+2.4-1.1x10^16, and the spectroscopic Q-factor for a Ramsey time of 3 s is 6.7x10^15. As part of this experiment, we demonstrate a method to detect the individual quantum states of two Al+ ions in a Mg+-Al+-Al+ linear ion chain without spatially resolving the ions.
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interactions between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.
We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 microns are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optical resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the mF = 0 Zeeman state, we observe correlated pair creation in the mF = +/- 1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا