No Arabic abstract
Graphene/silicon heterostructures have attracted tremendous interest as a new platform for diverse electronic and photonic devices such as barristors, solar cells, optical modulators, and chemical sensors. The studies to date largely focus on junctions between graphene and lightly-doped silicon, where a Schottky barrier is believed to dominate the carrier transport process. Here we report a systematic investigation of carrier transport across the heterojunctions formed between graphene and highly-doped silicon. By varying the silicon doping level and the measurement temperature, we show that the carrier transport across the graphene/p++-Si heterojunction is dominated by tunneling effect through the native oxide. We further demonstrate that the tunneling current can be effectively modulated by the external gate electrical field, resulting in a vertical tunneling transistor. Benefited from the large density of states of highly doped silicon, our tunneling transistors can deliver a current density over 20 A/cm2, about two orders of magnitude higher than previous graphene/insulator/graphene tunneling transistor at the same on/off ratio.
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e2/h, a high ON/OFF ratio of >107 at 170 K, and large electron and hole mobility of ~200 cm2V-1s-1 at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ~330 cm2V-1s-1 and that of holes to ~270 cm2V-1s-1. We attribute our ability to observe the intrinsic, phonon limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible and transparent low-resistance Ohmic contacts to a wide range of quasi-2D semiconductors. KEYWORDS: MoS2, WSe2, field-effect transistors, graphene, Schottky barrier, ionic-liquid gate
Heterostructures comprising of silicon (Si), molybdenum disulfide (MoS${_2}$) and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature dependent asymmetric current, indicating thermally activated charge carrier transport. The data is compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across the devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS${_2}$ is linearly temperature dependent for T = 200 to 300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS${_2}$, strain at the Si/MoS${_2}$ interface or different electron effective masses in Si and MoS${_2}$, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS${_2}$. The low barrier formed between Si and MoS${_2}$ and the resultant thermionic emission demonstrated here makes the present devices potential candidates as the emitter diode of graphene-base hot electron transistors for future high-speed electronics.
Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced bioelectronic mycotoxin sensor based on graphene field-effect transistors integrated on a silicon chip. A specific aptamer for Ochratoxin A (OTA) was attached to graphene through covalent bonding with the pyrene-based linker, which was deposited with an electric field stimulation to increase the surface coverage. This graphene/aptamer sensor demonstrates high sensitivity to OTA with the lowest detection limit of 1.4 pM within a response time of 10 s which is superior to any other reported aptamer-based methods.
We prepare twist-controlled resonant tunneling transistors consisting of monolayer (Gr) and Bernal bilayer (BGr) graphene electrodes separated by a thin layer of hexagonal boron nitride (hBN). The resonant conditions are achieved by closely aligning the crystallographic orientation of the graphene electrodes, which leads to momentum conservation for tunneling electrons at certain bias voltages. Under such conditions, negative differential conductance (NDC) can be achieved. Application of in-plane magnetic field leads to electrons acquiring additional momentum during the tunneling process, which allows control over the resonant conditions.
MXenes with versatile chemistry and superior electrical conductivity are prevalent candidate materials for energy storage and catalysts. Inspired by recent experiments of hybridizing MXenes with carbon materials, here we theoretically design a series of heterostructures of N-doped graphene supported by MXene monolayers as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Our first-principles calculations show that the graphitic sheet on V2C and Mo2C MXenes are highly active with an ORR overpotential down to 0.36 V and reaction free energies for the HER approaching zero, both with low kinetic barriers. Such outstanding catalytic activities originate from the electronic coupling between the graphitic sheet and the MXene, and can be correlated with the pz band center of surface carbon atoms and the work function of the heterostructures. Our findings screen a novel form of highly active electrocatalysts by taking advantage of the fast charge transfer kinetics and strong interfacial coupling of MXenes, and illuminate a universal mechanism for modulating the catalytic properties of two-dimensional hybrid materials.