Do you want to publish a course? Click here

Phosphorene and Doped Monolayers Interfaced TiO$_2$ with Type-II Band Alignments: Novel Excitonic Solar Cells

82   0   0.0 ( 0 )
 Added by Liujiang Zhou
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phosphorene, a new elemental two dimensional (2D) material recently isolated by mechanical exfoliation, holds the feature of a direct band gap of around 2.0 eV, overcoming graphenes weaknesses (zero band gap) to realize the potential application in optoelectronic devices. Constructing van der Waals heterostructures is an efficient approach to modulate the band structure, to advance the charge separation efficiency, and thus to optimize the optoelectronic properties. Here, we theoretically investigated three type-II heterostructures based on perfect phosphorene and its doped monolayers interfaced with TiO$_2$(110) surface. Doping in phosphorene has a tunability on built-in potential, charge transfer, light absorbance, as well as electron dynamics, which helps to optimize the light absorption efficiency. Three excitonic solar cells (XSCs) based on the phosphorene$-$TiO$_2$ heterojunctions have been proposed, which exhibit high power conversion efficiencies dozens of times higher than conventional solar cells, comparable to MoS$_2$/WS$_2$ XSC. The nonadiabatic molecular dynamics within the time-dependent density functional theory framework shows ultrafast electron transfer time of 6.1$-$10.8 fs, and slow electron$-$hole recombination of 0.58$-$1.08 ps, yielding $>98%$ quantum efficiency for charge separation, further guaranteeing the practical power conversion efficiencies in XSC.

rate research

Read More

A first principles approach is presented for calculations of optical -- ultraviolet (UV) spectra including excitonic effects. The approach is based on Bethe-Salpeter equation calculations using the textsc{NBSE} code combined with ground-state density-functional theory calculations from the electronic structure code textsc{ABINIT}. Test calculations for bulk Si are presented, and the approach is illustrated with calculations of the optical spectra and birefringence of $alpha$-phase SiO$_2$ and the rutile and anatase phases of TiO$_2$. An interpretation of the strong birefringence in TiO$_2$ is presented.
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detailed investigation of the magnetic, electronic, and optical properties of transition-metal doped TNTs, based on hybrid density functional theory. In particular, we focus on the $3d$, the $4d$, as well as selected $5d$ transition-metal doped TNTs. Thereby, we are able to explain the enhanced optical activity and photocatalytic sensitivity observed in various experiments. We find, for example, that Cr- and W-doped TNTs can be employed for applications like water splitting and carbon dioxide reduction, and for spintronic devices. The best candidate for water splitting is Fe-doped TNT, in agreement with experimental observations. In addition, our findings provide valuable hints for future experimental studies of the ferromagnetic/spintronic behavior of metal-doped titania nanotubes.
The phase transition between type-I and type-II Dirac semimetals will reveal a series of significant physical properties because of their completely distinct electronic, optical and magnetic properties. However, no mechanism and materials have been proposed to realize the transition to date. Here, we propose that the transition can be realized in two-dimensional (2D) materials consisting of zigzag chains, by tuning external strains. The origination of the transition is that some orbital interactions in zigzag chains vary drastically with structural deformation, which changes dispersions of the corresponding bands. Two 2D nanosheets, monolayer PN and AsN, are searched out to confirm the mechanism by using first-principles calculations. They are intrinsic type-I or type-II Dirac materials, and transit to another type of Dirac materials by external strains. In addition, a possible routine is proposed to synthesize the new 2D structures.
Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and methyl ammonium (MA) lead iodide perovskite (MAPbI$_3$). The CH$_3$NH$_3$PbI$_3$/La$_x$Ba$_{(1-x)}$SnO$_3$ interface forms a stable all-perovskite heterostructure. The selective band alignment is manipulated with band gap renormalization by La-doping on the Ba site. LBSO shows high mobility, photo-stability, and structural stability, promising the next generation ETL materials.
Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has so far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا