No Arabic abstract
A propagating beam triggering a local phase transition in a nematic elastomer sets it into a crawling motion, which may morph due to buckling. We consider the motion of the various configurations of slender rods and thin stripes with both uniform and splayed nematic order in cross-section, and detect the dependence of the gait and speed on flexural rigidity and substrate friction.
We consider three-dimensional reshaping of thin nemato-elastic sheets containing half-charged defects upon nematic-isotropic transition. Gaussian curvature, that can be evaluated analytically when the nematic texture is known, differs from zero in the entire domain and has a dipole or hexapole singularity, respectively, at defects of positive or negative sign. The latter kind of defects appears in not simply connected domains. Three-dimensional shapes dependent on boundary anchoring are obtained with the help of finite element computations.
We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e-cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric textit{e}-cone solution is energetically minimal any more. Instead, we obtain skewed e-cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.
We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a non-monotonic function of the elastic constant $mu$, and reaches a peak at $mu=mu^ast$. For $mu < mu^ast$ the system fails to reach a steady state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant $ u$ for all nonzero values of $ u$. Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time-scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.
An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.
Experimental results and their interpretations are presented on the nonlinear acoustic effects of multiple scattered elastic waves in unconsolidated granular media. Short wave packets with a central frequency higher than the so-called cut-off frequency of the medium are emitted at one side of the statically stressed slab of glass beads and received at the other side after multiple scattering and nonlinear interactions. Typical signals are strongly distorted compared to their initially radiated shape both due to nonlinearity and scattering. It is shown that acoustic waves with a deformation amplitude much lower than the mean static deformation of the contacts in the medium can modify the elastic properties of the medium, especially for the weak contact skeleton part. This addresses the problem of reproducibility of granular structures during and after acoustic excitation, which is necessary to understand in the non destructive testing of the elastic properties of granular media by acoustic methods. Coda signal analysis is shown to be a powerful time-resolved tool to monitor slight modifications in the elastic response of an unconsolidated granular structure.