No Arabic abstract
We report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d3 Os5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. This demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4d3 and 5d3 systems, and that theoretical treatments must include spin-orbit coupling.
Sr$_{3}$ZnIrO$_{6}$ is an effective spin one-half Mott insulating iridate belonging to a family of magnets which includes a number of quasi-one dimensional systems as well as materials exhibiting three dimensional order. Here we present the results of an extensive investigation into the magnetism including heat capacity, a.c. susceptibility, muon spin rotation ($mu$SR), neutron diffraction and inelastic neutron scattering on the same sample. It is established that the material exhibits a transition at about $17$ K into a three-dimensional antiferromagnetic structure with propagation vector $boldsymbol{k}=(0,frac{1}{2},1)$ in the hexagonal setting of R$bar{3}$c and non-collinear moments of $0.87$$mu_B$ on Ir$^{4+}$ ions. Further we have observed a well defined powder averaged spin wave spectrum with zone boundary energy of $sim 5$ meV at $5$ K. We stress that a theoretical analysis shows that the observed non-collinear magnetic structure arises from anisotropic inter- and intra- chain exchange which has its origin in significant spin-orbit coupling. The model can satisfactorily explain the observed spin wave excitations.
In the context of correlated insulators, where electron-electron interactions (U) drive the localization of charge carriers, the metal-insulator transition (MIT) is described as either bandwidth (BC) or filling (FC) controlled. Motivated by the challenge of the insulating phase in Sr$_2$IrO$_4$, a new class of correlated insulators has been proposed, in which spin-orbit coupling (SOC) is believed to renormalize the bandwidth of the half-filled $j_{mathrm{eff}} = 1/2$ doublet, allowing a modest U to induce a charge-localized phase. Although this framework has been tacitly assumed, a thorough characterization of the ground state has been elusive. Furthermore, direct evidence for the role of SOC in stabilizing the insulating state has not been established, since previous attempts at revealing the role of SOC have been hindered by concurrently occurring changes to the filling. We overcome this challenge by employing multiple substituents that introduce well defined changes to the signatures of SOC and carrier concentration in the electronic structure, as well as a new methodology that allows us to monitor SOC directly. Specifically, we study Sr$_2$Ir$_{1-x}$T$_x$O$_4$ (T = Ru, Rh) by angle-resolved photoemission spectroscopy (ARPES), combined with ab-initio and supercell tight-binding calculations. This allows us to distinguish relativistic and filling effects, thereby establishing conclusively the central role of SOC in stabilizing the insulating state of Sr$_2$IrO$_4$. Most importantly, we estimate the critical value for spin-orbit coupling in this system to be $lambda_c = 0.42 pm 0.01$ eV, and provide the first demonstration of a spin-orbit-controlled MIT.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relevant energy scales and applying suitable theoretical models. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca$_3$LiOsO$_6$ and Ba$_2$YOsO$_6$. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal the ground state of $5d^3$ based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.
Double-perovskite oxides that contain both 3d and 5d transition metal elements have attracted growing interest as they provide a model system to study the interplay of strong electron interaction and large spin-orbit coupling (SOC). Here, we report on experimental and theoretical studies of the magnetic and electronic properties of double-perovskites (La$_{1-x}$Sr$_x$)$_2$CuIrO$_6$ ($x$ = 0.0, 0.1, 0.2, and 0.3). The undoped La$_2$CuIrO$_6$ undergoes a magnetic phase transition from paramagnetism to antiferromagnetism at T$_N$ $sim$ 74 K and exhibits a weak ferromagnetic behavior below $T_C$ $sim$ 52 K. Two-dimensional magnetism that was observed in many other Cu-based double-perovskites is absent in our samples, which may be due to the existence of weak Cu-Ir exchange interaction. First-principle density-functional theory (DFT) calculations show canted antiferromagnetic (AFM) order in both Cu$^{2+}$ and Ir$^{4+}$ sublattices, which gives rise to weak ferromagnetism. Electronic structure calculations suggest that La$_2$CuIrO$_6$ is an SOC-driven Mott insulator with an energy gap of $sim$ 0.3 eV. Sr-doping decreases the magnetic ordering temperatures ($T_N$ and $T_C$) and suppresses the electrical resistivity. The high temperatures resistivity can be fitted using a variable-range-hopping model, consistent with the existence of disorders in these double-pervoskite compounds.
We report an ultrasonic study of the magneto-elastic coupling of the hydrogenated and deuterated (TMTTF)$_2$PF$_6$ organic salts. For both salts the temperature dependence of the longitudinal velocity along the c* axis displays a monotonic stiffening of the $C_{33}$ compressibility modulus upon cooling. Below the characteristic temperature scale 40 K the modulus stiffening becomes markedly enhanced, in concomitance with the reduction of spin degrees of freedom previously seen in magnetic measurements as low dimensional precursors of the spin-Peierls transition. The magneto-elastic coupling appears to be much weaker in the hydrogenated salt due to the highly inhomogeneous elastic behavior induced by the proximity of the charge ordering transition to the spin-Peierls phase. For the deuterated salt, an important anomaly in the ultrasound velocity is observed below the spin-Peierls transition temperature $T_{rm SP}$ in agreement with scaling of the elastic deformation with the spin-Peierls order parameter. In spite of the weakly inhomogeneous character of the spin-Peierls phase transition, the magnetic field dependence of $T_{rm SP}$ is well captured with the mean-field prediction for the lattice distorted Heisenberg spin chain.