Do you want to publish a course? Click here

Pentagon chain in external fields

97   0   0.0 ( 0 )
 Added by Zsolt Gulacsi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a pentagon chain described by a Hubbard type of model considered under periodic boundary conditions. The system i) is placed in an external magnetic field perpendicular to the plane of the cells, and ii) is in a site selective manner under the action of an external electric potential. In these conditions we show in a non-approximated manner that the physical properties of the system can be qualitatively changed. The changes cause first strong modifications of the band structure of the system created by the one-particle part of the Hamiltonian, and second, considerably redraw the emergence domains of ordered phases. We exemplify this by deducing ferromagnetic ground states in the presence of external fields in two different domains of the parameter space.



rate research

Read More

144 - Zsolt Gulacsi 2013
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction $U_i$ is site dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in details (because of lack of space see the continuation in the paper).
We model conducting pentagon chains with a multi orbital Hubbard model and prove that well below half filling exact ferromagnetic ground states appear. The rigorous method we use is based on the transformation of original hamiltonian into positive semidefinite form. This technique is independent of the spatial dimesion and does not require integrability of the model. The obtained ferromagnetism is connected to dispersionless bands but in a much broader sense than flat band ferromagnetism requires, where on every site a Hubbard term is present. In our case only a small percentage of, even randomly distributed, sites are only interacting.
Under a perfect periodic potential, the electric current density induced by a constant electric field may exhibit nontrivial oscillations, so-called Bloch oscillations, with an amplitude that remains nonzero in the large system size limit. Such oscillations have been well studied for nearly noninteracting particles and observed in experiments. In this work, we revisit Bloch oscillations in strongly interacting systems. By analyzing the spin-1/2 XXZ chain, which can be mapped to a model of spinless electrons, we demonstrate that the current density at special values of the anisotropy parameter $Delta=-cos(pi/p)$ ($p=3,4,5,cdots$) in the ferromagnetic gapless regime behaves qualitatively the same as in the noninteracting case ($Delta=0$) even in the weak electric field limit. When $Delta$ deviates from these values, the amplitude of the oscillation under a weak electric field is suppressed by a factor of the system size. We estimate the strength of the electric field required to observe such a behavior using the Landau--Zener formula.
We present a detailed study of complex dielectric constant and ferroelectric polarization in multiferroic LiCuVO4 as function of temperature and external magnetic field. In zero external magnetic field, spiral spin order with an ab helix and a propagation vector along the crystallographic b direction is established, which induces ferroelectric order with spontaneous polarization parallel to a. The direction of the helix can be reoriented by an external magnetic field and allows switching of the spontaneous polarization. We find a strong dependence of the absolute value of the polarization for different orientations of the spiral plane. Above 7.5 T, LiCuVO4 reveals collinear spin order and remains paraelectric for all field directions. Thus this system is ideally suited to check the symmetry relations for spiral magnets as predicted theoretically. The strong coupling of ferroelectric and magnetic order is documented and the complex (B,T) phase diagram is fully explored.
160 - Zsolt Gulacsi 2014
For a general class of conducting polymers with arbitrary large unit cell and different on-site Coulomb repulsion values on different type of sites, I demonstrate in exact terms the emergence possibility of an upper, interaction created effective flat band. This last appears as a consequence of a kinetic energy quench accompanied by a strong interaction energy decrease, and leads to a non-saturated ferromagnetic state. This ordered state clearly differs from the known flat-band ferromagnetism. This is because it emerges in a system without bare flat bands, requires inhomogeneous on-site Coulomb repulsions values, and possesses non-zero lower interaction limits at the emergence of the ordered phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا