No Arabic abstract
The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation-damage-free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (XPDC), and two-color two-photon ghost diffraction. We illustrate that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage.
High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setup in the reference arm, while leaving untouched the object arm. The product of spatial resolutions of the ghost image and ghost diffraction experiments is shown to overcome a limit which was formerly thought to be achievable only with entangled photons.
In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereby its position becomes well-defined. This particle therefore diffracts into a large divergence angle; this effect can be understood as a consequence of the Heisenberg uncertainty principle. Popper further argued that its entangled partner would become comparably localized in position, and that, according to his understanding of the Copenhagen interpretation of quantum mechanics, the qo{mere knowledge} of the position of this particle would cause it also to diffract into a large divergence angle. Popper recognized that such behaviour could violate the principle of causality in that the slit could be removed and the partner particle would be expected to respond instantaneously. Popper thus concluded that it was most likely the case that in an actual experiment the partner photon would not undergo increased diffractive spreading and thus that the Copenhagen interpretation is incorrect. Here, we report and analyze the results of an implementation of Poppers proposal. We find that the partner beam does not undergo increased diffractive spreading. Our work resolves many of the open questions involving Poppers proposal, and it provides further insight into the nature of entanglement and its relation to the uncertainty principle of correlated particles.
In quantum mechanics, entanglement and correlations are not just a mere sporadic curiosity, but rather common phenomena at the basis of an interacting quantum system. In electron microscopy, such concepts have not been extensively explored yet in all their implications; in particular, inelastic scattering can be reanalyzed in terms of correlation between the electron beam and the sample. While classical inelastic scattering simply implies loss of coherence in the electron beam, performing a joint measurement on the electron beam and the sample excitation could restore the coherence and the lost information. Here, we propose to exploit joint measurement in electron microscopy for a surprising and counter-intuitive application of the concept of ghost imaging. Ghost imaging, first proposed in quantum photonics, can be applied partially in electron microscopy by performing joint measurement between the portion of the transmitted electron beam and a photon emitted from the sample reaching a bucket detector. This would permit us to form a one-dimensional virtual image of an object that even has not interacted with the electron beam directly. This technique is extremely promising for low-dose imaging that requires the minimization of radiation exposure for electron-sensitive materials, because the object interacts with other form of waves, e.g., photons/surface plasmon polaritons, and not the electron beam. We demonstrate this concept theoretically for any inelastic electron-sample interaction in which the electron excites a single quantum of a collective mode, such as a photon, plasmon, phonon, magnon, or any optical polariton.
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called dose fractionation theorem of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with Rose-criterion image quality.
We show that single-slit two-photon ghost diffraction can be explained very simply by using a wave-packet evolution of a generalised EPR state. Diffraction of a wave travelling in the x-direction can be described in terms of the spreading in time of the transverse (z-direction) wave-packet, within the Fresnel approximation. The slit is assumed to truncate the transverse part of the wavefunction of the photon to within the width of the slit. The analysis reproduces all features of the two-photon single-slit ghost diffraction.