Do you want to publish a course? Click here

Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter

77   0   0.0 ( 0 )
 Added by Mark Lovell
 Publication date 2015
  fields Physics
and research's language is English
 Authors Mark R.Lovell




Ask ChatGPT about the research

The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, $L_6$, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than $2times10^{12}M_{odot}$ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of $L_6$ for $M_sle 8$~keV. We also show that the range of $L_6$ that is in best agreement with the 3.5~keV line (if produced by decays of 7~keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than $1.5times10^{12}M_{odot}$. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel~et~al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.



rate research

Read More

We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutrinos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
We introduce a new physical recipe into the De Lucia and Blaizot version of the Munich semi-analytic model built upon the Millennium dark matter simulation: the tidal stripping of stellar material from satellite galaxies during mergers. To test the significance of the new physical process we apply a Monte Carlo Markov Chain parameter estimation technique constraining the model with the $K$-band luminosity function, $B-V$ colours and the black hole-bulge mass relation. The differences in parameter correlations, and in the allowed regions in likelihood space, reveal the impact of the new physics on the basic ingredients of the model, such as the star-formation laws, feedback recipes and the black hole growth model. With satellite disruption in place, we get a model likelihood four times higher than in the original model, indicating that the new process seems to be favoured by observations. This is achieved mainly due to a reduction in black hole growth that produces a better agreement between the properties of central black holes and host galaxies. Compared to the best-fit model without disruption, the new model removes the excess of dwarf galaxies in the original recipe with a more modest supernova heating. The new model is now consistent with the three observational data sets used to constrain it, while significantly improving the agreement with observations for the distribution of metals in stars. Moreover, the model now follows the build up of intra-cluster light.
We present an updated model for the evolution of the orbits of orphan galaxies to be used in the SAG semi-analytical model of galaxy formation and evolution. In cosmological simulations, orphan galaxies are those satellite galaxies for which, due to limited mass resolution, halo finders lose track of their dark matter subhalos and can no longer be distinguished as self-bound overdensities within the larger host system. Since the evolution of orphans depends strongly on the orbit they describe within their host halo, a proper treatment of their evolution is crucial in predicting the distribution of subhalos and satellite galaxies. The model proposed takes into account the dynamical friction drag, mass loss by tidal stripping and a proximity merger criterion, also it is simple enough to be inexpensive from a computational point of view. To calibrate this model, we apply it onto a dark matter only simulation and compare the results with a high resolution simulation, considering the halo mass function and the two-point correlation function as constraints. We show that while the halo mass function fails to put tight constraints on the dynamical friction, the addition of clustering information helps to better define the parameters of the model related to the spatial distribution of subhalos. Using the model with the best fit parameters allows us to reproduce the halo mass function to a precision better than 5 per cent, and the two point correlation function at a precision better than 10 per cent.
Dark matter self interactions can leave distinctive signatures on the properties of satellite galaxies around Milky Way--like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We delineate the regions of self-interacting dark matter parameter space---specified by interaction cross section and a velocity scale---where each of these effects dominates, and show how the relative mass loss depends on the satellites initial mass, density profile and orbit. We obtain novel, conservative constraints in this parameter space using Milky Way satellite galaxies with notably high central densities and small pericenter distances. Our results for self-interacting dark matter models, in combination with constraints from clusters of galaxies, favor velocity-dependent cross sections that lead to gravothermal core collapse in the densest satellites.
We study the impact of a warm dark matter (WDM) cosmology on dwarf galaxy formation through a suite of cosmological hydrodynamical zoom-in simulations of $M_{rm halo} approx10^{10},M_{odot}$ dark matter halos as part of the Feedback in Realistic Environments (FIRE) project. A main focus of this paper is to evaluate the combined effects of dark matter physics and stellar feedback on the well-known small-scale issues found in cold dark matter (CDM) models. We find that the $z=0$ stellar mass of a galaxy is strongly correlated with the central density of its host dark matter halo at the time of formation, $z_{rm f}$, in both CDM and WDM models. WDM halos follow the same $M_{star}(z=0)-V_{rm max}(z_{rm f})$ relation as in CDM, but they form later, are less centrally dense, and therefore contain galaxies that are less massive than their CDM counterparts. As a result, the impact of baryonic effects on the central gravitational potential is typically diminished relative to CDM. However, the combination of delayed formation in WDM and energy input from stellar feedback results in dark matter profiles with lower overall densities. The WDM galaxies studied here have a wider diversity of star formation histories (SFHs) than the same systems simulated in CDM, and the two lowest $M_{star}$ WDM galaxies form all of their stars at late times. The discovery of young ultra-faint dwarf galaxies with no ancient star formation -- which do not exist in our CDM simulations -- would therefore provide evidence in support of WDM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا