Do you want to publish a course? Click here

A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data

65   0   0.0 ( 0 )
 Added by Meisam Razaviyayn
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

This article presents a powerful algorithmic framework for big data optimization, called the Block Successive Upper bound Minimization (BSUM). The BSUM includes as special cases many well-known methods for analyzing massive data sets, such as the Block Coordinate Descent (BCD), the Convex-Concave Procedure (CCCP), the Block Coordinate Proximal Gradient (BCPG) method, the Nonnegative Matrix Factorization (NMF), the Expectation Maximization (EM) method and so on. In this article, various features and properties of the BSUM are discussed from the viewpoint of design flexibility, computational efficiency, parallel/distributed implementation and the required communication overhead. Illustrative examples from networking, signal processing and machine learning are presented to demonstrate the practical performance of the BSUM framework



rate research

Read More

Sparse optimization is a central problem in machine learning and computer vision. However, this problem is inherently NP-hard and thus difficult to solve in general. Combinatorial search methods find the global optimal solution but are confined to small-sized problems, while coordinate descent methods are efficient but often suffer from poor local minima. This paper considers a new block decomposition algorithm that combines the effectiveness of combinatorial search methods and the efficiency of coordinate descent methods. Specifically, we consider a random strategy or/and a greedy strategy to select a subset of coordinates as the working set, and then perform a global combinatorial search over the working set based on the original objective function. We show that our method finds stronger stationary points than Amir Beck et al.s coordinate-wise optimization method. In addition, we establish the convergence rate of our algorithm. Our experiments on solving sparse regularized and sparsity constrained least squares optimization problems demonstrate that our method achieves state-of-the-art performance in terms of accuracy. For example, our method generally outperforms the well-known greedy pursuit method.
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with accelerators further complicate the development process. waLBerla addresses these challenges by providing the user with highly efficient building blocks for developing simulations on block-structured grids. The block-structured domain partitioning is flexible enough to handle complex geometries, while the structured grid within each block allows for highly efficient implementations of stencil-based algorithms. We present several example applications realized with waLBerla, ranging from lattice Boltzmann methods to rigid particle simulations. Most importantly, these methods can be coupled together, enabling multiphysics simulations. The framework uses meta-programming techniques to generate highly efficient code for CPUs and GPUs from a symbolic method formulation. To ensure software quality and performance portability, a continuous integration toolchain automatically runs an extensive test suite encompassing multiple compilers, hardware architectures, and software configurations.
Wasserstein distance-based distributionally robust optimization (DRO) has received much attention lately due to its ability to provide a robustness interpretation of various learning models. Moreover, many of the DRO problems that arise in the learning context admits exact convex reformulations and hence can be tackled by off-the-shelf solvers. Nevertheless, the use of such solvers severely limits the applicability of DRO in large-scale learning problems, as they often rely on general purpose interior-point algorithms. On the other hand, there are very few works that attempt to develop fast iterative methods to solve these DRO problems, which typically possess complicated structures. In this paper, we take a first step towards resolving the above difficulty by developing a first-order algorithmic framework for tackling a class of Wasserstein distance-based distributionally robust logistic regression (DRLR) problem. Specifically, we propose a novel linearized proximal ADMM to solve the DRLR problem, whose objective is convex but consists of a smooth term plus two non-separable non-smooth terms. We prove that our method enjoys a sublinear convergence rate. Furthermore, we conduct three different experiments to show its superb performance on both synthetic and real-world datasets. In particular, our method can achieve the same accuracy up to 800+ times faster than the standard off-the-shelf solver.
In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then propose an algorithmic framework to tackle the considered class of problems and prove its convergence to points satisfying the newly introduced concept of stationarity. We further show that, by suitably choosing the neighborhood, other well-known optimality conditions from the literature can be recovered at the limit points of the sequence produced by the algorithm. Finally, we analyze the computational impact of the neighborhood size within our framework and in the comparison with some state-of-the-art algorithms, namely, the Penalty Decomposition method and the Greedy Sparse-Simplex method. The algorithms have been tested using a benchmark related to sparse logistic regression problems.
87 - Chao Ning , Fengqi You 2017
A novel data-driven stochastic robust optimization (DDSRO) framework is proposed for optimization under uncertainty leveraging labeled multi-class uncertainty data. Uncertainty data in large datasets are often collected from various conditions, which are encoded by class labels. Machine learning methods including Dirichlet process mixture model and maximum likelihood estimation are employed for uncertainty modeling. A DDSRO framework is further proposed based on the data-driven uncertainty model through a bi-level optimization structure. The outer optimization problem follows a two-stage stochastic programming approach to optimize the expected objective across different data classes; adaptive robust optimization is nested as the inner problem to ensure the robustness of the solution while maintaining computational tractability. A decomposition-based algorithm is further developed to solve the resulting multi-level optimization problem efficiently. Case studies on process network design and planning are presented to demonstrate the applicability of the proposed framework and algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا