No Arabic abstract
We give a progress report on a project aimed at a high-precision calculation of the decay constants $f_B$ and $f_{B_s}$ from simulations with HISQ heavy and light valence and sea quarks. Calculations are carried out with several heavy valence-quark masses on ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and several light sea-quark mass ratios $m_{ud}/m_s$, including approximately physical sea-quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. We present a preliminary error budget with projected uncertainties of 2.2~MeV and 1.5~MeV for $f_B$ and $f_{B_s}$, respectively.
We present a progress report on our calculation of the decay constants $f_B$ and $f_{B_s}$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion.
Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant $f_{B_c}$, and revisit $f_B$ and $f_{B_s}$. Results exhibit excellent stability in a wide range of values of the integration radius in the complex squared energy plane, and of the order of the Legendre polynomial. Results are $f_{B_c} = 528 pm 19$ MeV, $f_B = 186 pm 14$ MeV, and $f_{B_s} = 222 pm 12$ MeV.
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2}) mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5}) mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.
The MILC collaboration computation of heavy-light decay constants is described. Results for $f_B$, $f_{B_s}$, $f_D$, $f_{D_s}$ and their ratios are presented. These results are still preliminary, but the analysis is close to being completed. Sources of systematic error, both within the quenched approximation and from quenching itself, are estimated, although the latter estimate is rather crude. A sample of our results is: $f_B=153 pm 10 {}^{+36}_{-13} {}^{+13}_{-0} MeV$, $f_{B_s}/f_B = 1.10 pm 0.02 {}^{+0.05}_{-0.03} {}^{+0.03}_{-0.02}$, and $f_{B}/f_{D_s} = 0.76 pm 0.03 {}^{+0.07}_{-0.04} {}^{+0.02}_{-0.01}$, where the errors are statistical, systematic (within the quenched approximation), and systematic (of quenching), respectively. The largest source of error comes from the extrapolation to the continuum. The second largest source is the chiral extrapolation. At present, the central values are based on linear chiral extrapolations; a shift to quadratic extrapolations would for example raise $f_B$ by $approx 20$ MeV and thereby make the error within the quenched approximation more symmetric.
We present a new determination of the B and B_s meson decay constants using NRQCD b-quarks, HISQ light and strange valence quarks and the MILC collaboration N_f=2+1 lattices. The new calculations improve on HPQCDs earlier work with NRQCD b-quarks by replacing AsqTad with HISQ valence quarks, by including a more chiral MILC fine ensemble in the analysis, and by employing better tuned quark masses and overall scale. We find f_B = 0.191(9)GeV, f_{B_s} = 0.228(10)GeV and f_{B_s}/f_B = 1.188(18). Combining the new value for f_{B_s}/f_B with a recent very precise determination of the B_s meson decay constant based on HISQ b-quarks, f_{B_s} = 0.225(4)GeV, leads to f_B = 0.189(4)GeV. With errors of just 2.1% this represents the most precise f_B available today.