Do you want to publish a course? Click here

The Dynamic Splitting Method with an application to portfolio credit risk

106   0   0.0 ( 0 )
 Added by Zdravko Botev
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We consider the problem of accurately measuring the credit risk of a portfolio consisting of loss exposures such as loans, bonds and other financial assets. We are particularly interested in the probability of large portfolio losses. We describe the popular models in the credit risk framework including factor models and copula models. To this end, we revisit the most efficient probability estimation algorithms within current copula credit risk literature, namely importance sampling. We illustrate the workings and developments of these algorithms for large portfolio loss probability estimation and quantile estimation. We then propose a modification to the dynamic splitting method which allows application to the credit risk models described. Our proposed algorithm for the unbiased estimation of rare-event probabilities, exploits the quasi-monotonic property of functions to embed a static simulation problem within a time-dependent Markov process. A study of our proposed algorithm is then conducted through numerical experiments with its performance benchmarked against current popular importance sampling algorithms.



rate research

Read More

This work presents a theoretical and empirical evaluation of Anderson-Darling test when the sample size is limited. The test can be applied in order to backtest the risk factors dynamics in the context of Counterparty Credit Risk modelling. We show the limits of such test when backtesting the distributions of an interest rate model over long time horizons and we propose a modified version of the test that is able to detect more efficiently an underestimation of the models volatility. Finally we provide an empirical application.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
The use of CVA to cover credit risk is widely spread, but has its limitations. Namely, dealers face the problem of the illiquidity of instruments used for hedging it, hence forced to warehouse credit risk. As a result, dealers tend to offer a limited OTC derivatives market to highly risky counterparties. Consequently, those highly risky entities rarely have access to hedging services precisely when they need them most. In this paper we propose a method to overcome this limitation. We propose to extend the CVA risk-neutral framework to compute an initial margin (IM) specific to each counterparty, which depends on the credit quality of the entity at stake, transforming the effective credit rating of a given netting set to AAA, regardless of the credit rating of the counterparty. By transforming CVA requirement into IM ones, as proposed in this paper, an institution could rely on the existing mechanisms for posting and calling of IM, hence ensuring the operational viability of this new form of managing warehoused risk. The main difference with the currently standard framework is the creation of a Specific Initial Margin, that depends in the credit rating of the counterparty and the characteristics of the netting set in question. In this paper we propose a methodology for such transformation in a sound manner, and hence this method overcomes some of the limitations of the CVA framework.
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using dynamical community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to the conventional landmark prediction, our framework enjoys great flexibility in that the landmark times can be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue in model incompatibility at different landmark times. When both the longitudinal predictors and the outcome event time are subject to right censoring, existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we consider a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا