No Arabic abstract
Ferromagnetic insulating La$_2$CoMnO$_{6-epsilon}$ (LCMO) epitaxial thin films grown on top of SrTiO$_3$ (001) substrates presents a strong magnetic anisotropy favoring the out of plane orientation of the magnetization with a strong anisotropy field ($sim 70$ kOe for film thickness of about 15 nm) and with a coercive field of about 10 kOe. The anisotropy can be tuned by modifying the oxygen content of the film which indirectly has two effects on the unit cell: i) change of the orientation of the LCMO crystallographic axis over the substrate (from c in-plane to c out-of-plane) and ii) shrinkage of the out of plane cell parameter, which implies increasing tensile strain of the films. In contrast, LCMO films grown on (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ and LaAlO$_3$ substrates (with a larger out-of-plane lattice parameter and compressive stress) display in-plane magnetic anisotropy. Thus, we link the strong magnetic anisotropy observed in La$_2$CoMnO$_{6-epsilon}$ to the relation between in-plane and out-of-plane parameters and so to the film stress.
We show tunable strain-induced perpendicular magnetic anisotropy (PMA) over a wide range of thicknesses in epitaxial ferrimagnetic insulator Eu3Fe5O12 (EuIG) and Tb3Fe5O12 (TbIG) thin films grown by pulsed-laser deposition on Gd3Ga5O12 with (001) and (111) orientations, respectively. The PMA field is determined by measuring the induced anomalous Hall loops in Pt deposited on the garnet films. Due to positive magnetostriction constants, compressive in-plane strain induces a PMA field as large as 32.9 kOe for 4 nm thick EuIG and 66.7 kOe for 5 nm thick TbIG at 300 K, and relaxes extremely slowly as the garnet film thickness increases. In bilayers consisting of Pt and EuIG or Pt and TbIG, robust PMA is revealed by squared anomalous Hall hysteresis loops in Pt, the magnitude of which appears to be only related to the net magnetic moment of iron sublattices. Furthermore, the magnetostriction constant is found to be 2.7x10^(-5) for EuIG and 1.35x10^(-5) for TbIG, comparable with the values for bulk crystals. Our results demonstrate a general approach of tailoring magnetic anisotropy of rare earth iron garnets by utilizing modulated strain via epitaxial growth.
Domain structures in CoFeB-MgO thin films with a perpendicular easy magnetization axis were observed by magneto-optic Kerr-effect microscopy at various temperatures. The domain wall surface energy was obtained by analyzing the spatial period of the stripe domains and fitting established domain models to the period. In combination with SQUID measurements of magnetization and anisotropy energy, this leads to an estimate of the exchange stiffness and domain wall width in these films. These parameters are essential for determining whether domain walls will form in patterned structures and devices made of such materials.
We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator Tm3Fe5O12 films grown with pulsed laser deposition on substituted-Gd3Ga5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.
We present experimental control of the magnetic anisotropy in a gadolinium iron garnet (GdIG) thin film from in-plane to perpendicular anisotropy by simply changing the sample temperature. The magnetic hysteresis loops obtained by SQUID magnetometry measurements unambiguously reveal a change of the magnetically easy axis from out-of-plane to in-plane depending on the sample temperature. Additionally, we confirm these findings by the use of temperature dependent broadband ferromagnetic resonance spectroscopy (FMR). In order to determine the effective magnetization, we utilize the intrinsic advantage of FMR spectroscopy which allows to determine the magnetic anisotropy independent of the paramagnetic substrate, while magnetometry determines the combined magnetic moment from film and substrate. This enables us to quantitatively evaluate the anisotropy and the smooth transition from in-plane to perpendicular magnetic anisotropy. Furthermore, we derive the temperature dependent $g$-factor and the Gilbert damping of the GdIG thin film.
Large perpendicular magnetic anisotropy (PMA) in transition metal thin films provides a pathway for enabling the intriguing physics of nanomagnetism and developing broad spintronics applications. After decades of searches for promising materials, the energy scale of PMA of transition metal thin films, unfortunately, remains only about 1 meV. This limitation has become a major bottleneck in the development of ultradense storage and memory devices. We discovered unprecedented PMA in Fe thin-film growth on the $(000bar{1})$ N-terminated surface of III-V nitrides from first-principles calculations. PMA ranges from 24.1 meV/u.c. in Fe/BN to 53.7 meV/u.c. in Fe/InN. Symmetry-protected degeneracy between $x^2-y^2$ and $xy$ orbitals and its lift by the spin-orbit coupling play a dominant role. As a consequence, PMA in Fe/III-V nitride thin films is dominated by first-order perturbation of the spin-orbit coupling, instead of second-order in conventional transition metal/oxide thin films. This game-changing scenario would also open a new field of magnetism on transition metal/nitride interfaces.