Do you want to publish a course? Click here

Asymptotic safety of gravity-matter systems

91   0   0.0 ( 0 )
 Added by Manuel Reichert
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalisation group setup put forward in cite{Christiansen:2015rva} for pure gravity. It includes full dynamical propagators and a genuine dynamical Newtons coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.



rate research

Read More

57 - John F. Donoghue 2019
The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in low energy quantum gravity. This raises the question of whether the present practice meets the Weinberg condition for Asymptotic Safety. I argue, with examples, that the running of $Lambda$ and $G$ found in Asymptotic Safety are not realized in the real world, with reasons which are relatively simple to understand. A comparison/contrast with quadratic gravity is also given, which suggests a few obstacles that must be overcome before the Lorentzian version of the theory is well behaved. I make a suggestion on how a Lorentzian version of Asymptotic Safety could potentially solve these problems.
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
We consider the renormalization of d-dimensional hypersurfaces (branes) embedded in flat (d+1)-dimensional space. We parametrize the truncated effective action in terms of geometric invariants built from the extrinsic and intrinsic curvatures. We study the renormalization-group running of the couplings and explore the fixed-point structure. We find evidence for an ultraviolet fixed point similar to the one underlying the asymptotic-safety scenario of gravity. We also examine whether the structure of the Galileon theory, which can be reproduced in the nonrelativistic limit, is preserved at the quantum level.
Considering the scale dependent effective spacetimes implied by the functional renormalization group in d-dimensional Quantum Einstein Gravity, we discuss the representation of entire evolution histories by means of a single, (d + 1)-dimensional manifold furnished with a fixed (pseudo-) Riemannian structure. This scale-space-time carries a natural foliation whose leaves are the ordinary spacetimes seen at a given resolution. We propose a universal form of the higher dimensional metric and discuss its properties. We show that, under precise conditions, this metric is always Ricci flat and admits a homothetic Killing vector field; if the evolving spacetimes are maximally symmetric, their (d + 1)-dimensional representative has a vanishing Riemann tensor even. The non-degeneracy of the higher dimensional metric which geometrizes a given RG trajectory is linked to a monotonicity requirement for the running of the cosmological constant, which we test in the case of Asymptotic Safety.
We investigate the Higgs-Yukawa system with Majorana masses of a fermion within asymptotically safe quantum gravity. Using the functional renormalization group method we derive the beta functions of the Majorana masses and the Yukawa coupling constant and discuss the possibility of a non-trivial fixed point for the Yukawa coupling constant. In the gravitational sector we take into account higher derivative terms such as $R^2$ and $R_{mu u}R^{mu u}$ in addition to the Einstein-Hilbert term for our truncation. For a certain value of the gravitational coupling constants and the Majorana masses, the Yukawa coupling constant has a non-trivial fixed point value and becomes an irrelevant parameter being thus a prediction of the theory. We also discuss consequences due to the Majorana mass terms to the running of the quartic coupling constant in the scalar sector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا