Do you want to publish a course? Click here

Theorems for Asymptotic Safety of Gauge Theories

75   0   0.0 ( 0 )
 Added by Daniel Litim
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.



rate research

Read More

57 - John F. Donoghue 2019
The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in low energy quantum gravity. This raises the question of whether the present practice meets the Weinberg condition for Asymptotic Safety. I argue, with examples, that the running of $Lambda$ and $G$ found in Asymptotic Safety are not realized in the real world, with reasons which are relatively simple to understand. A comparison/contrast with quadratic gravity is also given, which suggests a few obstacles that must be overcome before the Lorentzian version of the theory is well behaved. I make a suggestion on how a Lorentzian version of Asymptotic Safety could potentially solve these problems.
Constraining quantum gravity from observations is a challenge. We expand on the idea that the interplay of quantum gravity with matter could be key to meeting this challenge. Thus, we set out to confront different potential candidates for quantum gravity -- unimodular asymptotic safety, Weyl-squared gravity and asymptotically safe gravity -- with constraints arising from demanding an ultraviolet complete Standard Model. Specifically, we show that within approximations, demanding that quantum gravity solves the Landau-pole problems in Abelian gauge couplings and Yukawa couplings strongly constrains the viable gravitational parameter space. In the case of Weyl-squared gravity with a dimensionless gravitational coupling, we also investigate whether the gravitational contribution to beta functions in the matter sector calculated from functional Renormalization Group techniques is universal, by studying the dependence on the regulator, metric field parameterization and choice of gauge.
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalisation group setup put forward in cite{Christiansen:2015rva} for pure gravity. It includes full dynamical propagators and a genuine dynamical Newtons coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Recent work [hep-th/0504183,hep-th/0508002] indicates an approach to the formulation of diffeomorphism invariant quantum field theories (qfts) on the Groenewold-Moyal (GM) plane. In this approach to the qfts, statistics gets twisted and the S-matrix in the non-gauge qfts becomes independent of the noncommutativity parameter theta^{mu u}. Here we show that the noncommutative algebra has a commutative spacetime algebra as a substructure: the Poincare, diffeomorphism and gauge groups are based on this algebra in the twisted approach as is known already from the earlier work of [hep-th/0510059]. It is natural to base covariant derivatives for gauge and gravity fields as well on this algebra. Such an approach will in particular introduce no additional gauge fields as compared to the commutative case and also enable us to treat any gauge group (and not just U(N)). Then classical gravity and gauge sectors are the same as those for theta^{mu u}=0, but their interactions with matter fields are sensitive to theta^{mu u}. We construct quantum noncommutative gauge theories (for arbitrary gauge groups) by requiring consistency of twisted statistics and gauge invariance. In a subsequent paper (whose results are summarized here), the locality and Lorentz invariance properties of the S-matrices of these theories will be analyzed, and new non-trivial effects coming from noncommutativity will be elaborated. This paper contains further developments of [hep-th/0608138] and a new formulation based on its approach.
We consider the renormalization of d-dimensional hypersurfaces (branes) embedded in flat (d+1)-dimensional space. We parametrize the truncated effective action in terms of geometric invariants built from the extrinsic and intrinsic curvatures. We study the renormalization-group running of the couplings and explore the fixed-point structure. We find evidence for an ultraviolet fixed point similar to the one underlying the asymptotic-safety scenario of gravity. We also examine whether the structure of the Galileon theory, which can be reproduced in the nonrelativistic limit, is preserved at the quantum level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا