In this work we investigate how event-by-event hydrodynamics fluctuations affect the nuclear suppression factor and elliptic flow of heavy flavor mesons and non-photonic electrons. We use a 2D+1 Lagrangian ideal hydrodynamic code on an event-by-event basis in order to compute local temperature and flow profiles. Using a strong coupling inspired energy loss parametrization on top of the evolving space-time energy density distributions we are able to propagate the heavy quarks inside the medium until the freeze-out temperature is reached and a Pythia modeling of hadronization takes place. The resulting D$^0$ and heavy-flavor electron yield is compared with recent experimental data for $R_text{AA}$ and $v_2$ from the STAR and Phenix collaborations. In addition we present preditions for the higher order Fourier harmonic coefficients $v_3(p_T)$ of heavy-flavor electrons at RHICs $sqrt{S_text{NN}} = 200$ GeV collisions.
Recently it has been shown that a realistic description of the medium via event-by-event viscous hydrodynamics plays an important role in the long-standing $R_text{AA}$ vs. $v_2$ puzzle at high $p_T$. In this proceedings we begin to extend this approach to the heavy flavor sector by investigating the effects of full event-by-event fluctuating hydrodynamic backgrounds on the nuclear suppression factor and $v_2{2}$ of heavy flavor mesons and non-photonic electrons at intermediate to high $p_T$. We also show results for $v_3{2}$ of $B^0$ and D$^0$ for PbPb collisions at $sqrt{s}=2.76$ TeV.
Heavy flavor probes are sensitive to the properties of the quark gluon plasma (QGP) produced in relativistic heavy-ion collisions. A huge amount of effort has been devoted to studying different aspects of the heavy-ion collisions using heavy flavor particles. In this work, we study the dynamics of heavy quark transport in the QGP medium using the rapidity dependence of heavy flavor observables. We calculate the nuclear modification of $text{B}$ and $text{D}$ meson spectra as well as spectra of leptons from heavy flavor decays in the rapidity range $[-4.0,4.0]$. We use an implementation of the improved Langevin equation with gluon radiation on top of a (3+1)-dimensional relativistic viscous hydrodynamical background for several collision setups. We find that the rapidity dependence of the heavy quark modification is determined by the interplay between the smaller size of the medium, which affects the path length of the heavy quarks, and the softer heavy quark initial production spectrum. We compare our results with available experimental data and present predictions for open heavy flavor meson $R_text{AA}$ at finite rapidity.
High $p_T > 10$ GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low $p_T$ elliptic flow and event plane angle fluctuations in the soft sector. In this paper, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet energy loss model to reveal that the positive contribution from low $p_T$ $v_2$ fluctuations overwhelms the negative contributions from event plane fluctuations. This leads to an enhancement of high $p_T > 10$ GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade long high $p_T$ $R_{AA} otimes v_2$ puzzle. We also present the first theoretical calculation of high $p_T$ $v_3$, which is shown to be compatible with current LHC data. Furthermore, we discuss how short wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event shape engineering techniques.
Event-by-event viscous hydrodynamics is combined with heavy quark energy loss models to compute heavy flavor flow cumulants $v_2{2}$, $v_3{2}$, and $v_2{4}$ as well as the nuclear modification factors of $D^0$ and $B^0$ mesons in PbPb collisions at 2.76 TeV. Our results indicate that bottom quarks can flow as much as charm quarks in the $p_T$ range 8--30 GeV.
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the matter known as the quark gluon plasma (QGP). A huge amount of sub-nucleonic particles are created in the collision processes and their interaction and subsequent evolution after the collision takes place is at the core of the understanding of the matter that builds up the Universe. It has recently been shown that event-by-event fluctuations in the spatial distribution between different collision events have great impact on the particle distributions that are measured after the evolution of the created system. Specifically, these distributions are greatly responsible for generating the observed azimuthal anisotropy in measurements. Furthermore, the eventual cooling and expansion of the fluctuating system can become very complex due to lumps of energy density and temperature, which affects the interaction of the particles that traverse the medium. In this configuration, heavy flavor particles play a special role, as they are generally created at the initial stages of the process and have properties that allow them to retain memory from the interactions within the whole evolution of the system. However, the comparison between experimental data and theoretical or phenomenological predictions on the heavy flavor sector cannot fully explain the heavy quarks coupling with the medium and their subsequent hadronization process. [Full abstract in file]
Caio A G Prado
,Mauro R Cosentino
,Marcelo G Munhoz
.
(2015)
.
"Heavy flavor electron $R_text{AA}$ and $v_2$ in event-by-event relativistic hydrodynamics"
.
Caio Alves Garcia Prado
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا