No Arabic abstract
We consider a geometrically frustrated spin-1/2 Ising-Heisenberg diamond chain, which is an exactly solvable model when assuming part of the exchange interactions as Heisenberg ones and another part as Ising ones. A small $XY$ part is afterwards perturbatively added to the Ising couplings, which enabled us to derive an effective Hamiltonian describing the low-energy behavior of the modified but full quantum version of the initial model. The effective model is much simpler and free of frustration. It is shown that the $XY$ part added to the originally Ising interaction gives rise to the spin-liquid phase with continuously varying magnetization, which emerges in between the magnetization plateaus and is totally absent in the initial hybrid diamond-chain model. The elaborated approach can also be applied to other hybrid Ising-Heisenberg spin systems.
Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the parallelogram distortion on the ground state, magnetization, susceptibility and specific heat of the mixed-spin Ising-Heisenberg distorted diamond chain are investigated in detail. It is demonstrated that the zero-temperature magnetization curve may involve intermediate plateaus just at zero and one-half of the saturation magnetization. The temperature dependence of the specific heat may have up to three distinct peaks at zero magnetic field and up to four distinct peaks at a non-zero magnetic field. The origin of multipeak thermal behavior of the specific heat is comprehensively studied.
We show that the RKKY interaction in the two-impurity Anderson model comprise two contributions: a ferromagnetic part stemming from the symmetrized hybridization functions and an anti-ferromagnetic part. We demonstrate that this anti-ferromagnetic contribution can also be generated by an effective local tunneling term between the two impurities. This tunneling can be analytically calculated for particle-hole symmetric impurities. Replacing the full hybridization functions by the symmetric part and this tunneling term leads to the identical low-temperature fixed point spectrum in the numerical renormalization group. Compensating this tunneling term is used to restore the Varma-Jones quantum critical point between a strong coupling phase and a local singlet phase even in the absence of particle-hole symmetry in the hybridization functions. We analytically investigate the spatial frequencies of the effective tunneling term based on the combination of the band dispersion and the shape of the Fermi surface. Numerical renormalization group calculations provide a comparison of the distance dependent tunneling term and the local spin-spin correlation function. Derivations between the spatial dependency of the full spin-spin correlation function and the textbook RKKY interaction are reported.
We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic field. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B 81, 144419 (2010)]. We also confirm the prevalence of the N z Neel Ising order in the regime of comparable DM and magnetic field magnitudes.
The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is that it only applies to weakly interacting systems-which can be described within band theory. It is an open question to which extent this formalism can be generalized to correlated systems that can exhibit symmetry protected topological phases which are not adiabatically connected to any band insulator. In this work we address the many facettes of this question by considering the specific example of a Hubbard diamond chain. This model features a Mott insulator, a trivial insulating phase and an obstructed atomic limit phase. Here we discuss the nature of the Mott insulator and determine the phase diagram and topology of the interacting model with infinite density matrix renormalization group calculations, variational Monte Carlo simulations and with many-body topological invariants. We then proceed by considering a generalization of the TQC formalism to Greens functions combined with the concept of topological Hamiltonian to identify the topological nature of the phases, using cluster perturbation theory to calculate the Greens functions. The results are benchmarked with the above determined phase diagram and we discuss the applicability and limitations of the approach and its possible extensions.