Do you want to publish a course? Click here

On the global existence and blowup of smooth solutions of 3-D compressible Euler equations with time-depending damping

207   0   0.0 ( 0 )
 Added by Ingo Witt
 Publication date 2015
  fields
and research's language is English
 Authors Fei Hou




Ask ChatGPT about the research

In this paper, we are concerned with the global existence and blowup of smooth solutions of the 3-D compressible Euler equation with time-depending damping $$ partial_trho+operatorname{div}(rho u)=0, quad partial_t(rho u)+operatorname{div}left(rho uotimes u+p,I_{3}right)=-,frac{mu}{(1+t)^{lambda}},rho u, quad rho(0,x)=bar rho+varepsilonrho_0(x),quad u(0,x)=varepsilon u_0(x), $$ where $xinmathbb R^3$, $mu>0$, $lambdageq 0$, and $barrho>0$ are constants, $rho_0,, u_0in C_0^{infty}(mathbb R^3)$, $(rho_0, u_0) otequiv 0$, $rho(0,cdot)>0$, and $varepsilon>0$ is sufficiently small. For $0leqlambdaleq1$, we show that there exists a global smooth solution $(rho, u)$ when $operatorname{curl} u_0equiv 0$, while for $lambda>1$, in general, the solution $(rho, u)$ will blow up in finite time. Therefore, $lambda=1$ appears to be the critical value for the global existence of small amplitude smooth solutions.



rate research

Read More

We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.
We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavior of Gaussian initial data. We then show the weak L 1 convergence of the density as well as the asymptotic behavior of its first and second moments. Contents 1. Introduction 1 2. Assumptions and main results 3 3. The limit $gamma$ $rightarrow$ 1 of Barenblatts solutions 6 4. Gaussian solutions 9 5. Evolution of certain quantities 10 6. Convergence 15 7. Conclusion 17 References 17
Global existence for the nonisentropic compressible Euler equations with vacuum boundary for all adiabatic constants $gamma > 1$ is shown through perturbations around a rich class of background nonisentropic affine motions. The notable feature of the nonisentropic motion lies in the presence of non-constant entropies, and it brings a new mathematical challenge to the stability analysis of nonisentropic affine motions. In particular, the estimation of the curl terms requires a careful use of algebraic, nonlinear structure of the pressure. With suitable regularity of the underlying affine entropy, we are able to adapt the weighted energy method developed for the isentropic Euler by Hadv{z}ic and Jang to the nonisentropic problem. For large $gamma$ values, inspired by Shkoller and Sideris, we use time-dependent weights that allow some of the top-order norms to potentially grow as the time variable tends to infinity. We also exploit coercivity estimates here via the fundamental theorem of calculus in time variable for norms which are not top-order.
In this paper we consider a stochastic Keller-Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Furthermore, if the noise is not in a divergence form, we show that the solution has a finite time blowup (with nonzero probability) for any nonzero initial data. The results on the continuous dependence of solutions on the small random perturbations, alongside with the existence of local strong solutions, are also derived in this work.
In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the artificial viscosity approximations up to the origin, removing previous restrictions on the admissible test functions and ruling out formation of an artificial boundary layer at the origin. The uniform estimates may be of independent interest as concerns the possible rate of blow-up of the density and velocity at the origin for spherically symmetric flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا