Do you want to publish a course? Click here

Spherically symmetric solutions of the multi-dimensional, compressible, isentropic Euler equations

146   0   0.0 ( 0 )
 Added by Matthew Schrecker
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the artificial viscosity approximations up to the origin, removing previous restrictions on the admissible test functions and ruling out formation of an artificial boundary layer at the origin. The uniform estimates may be of independent interest as concerns the possible rate of blow-up of the density and velocity at the origin for spherically symmetric flows.



rate research

Read More

On the set of dissipative solutions to the multi-dimensional isentropic Euler equations we introduce a quasi-order by comparing the acceleration at all times. This quasi-order is continuous with respect to a suitable notion of convergence of dissipative solutions. We establish the existence of minimal elements. Minimizing the acceleration amounts to selecting dissipative solutions that are as close to being a weak solution as possible.
In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are different from the multi-dimensional Riemann problems widely studied in the literature. Our computations provide numerical evidence of the existence of initial value problems with multiple solutions, thus revealing a fundamental obstruction toward the well-posedness of the governing equations. The compressible Euler equations are solved using the positivity-preserving discontinuous Galerkin method.
274 - Ting Zhang , Daoyuan Fang 2007
In this note, by constructing suitable approximate solutions, we prove the existence of global weak solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients in the whole space $mathbb{R}^N$, $Ngeq2$ (or exterior domain), when the initial data are spherically symmetric. In particular, we prove the existence of spherically symmetric solutions to the Saint-Venant model for shallow water in the whole space (or exterior domain).
Considering the isentropic Euler equations of compressible fluid dynamics with geometric effects included, we establish the existence of entropy solutions for a large class of initial data. We cover fluid flows in a nozzle or in spherical symmetry when the origin r=0 is included. These partial differential equations are hyperbolic, but fail to be strictly hyperbolic when the fluid mass density vanishes and vacuum is reached. Furthermore, when geometric effects are taken into account, the sup-norm of solutions can not be controlled since there exist no invariant regions. To overcome these difficulties and to establish an existence theory for solutions with arbitrarily large amplitude, we search for solutions with finite mass and total energy. Our strategy of proof takes advantage of the particular structure of the Euler equations, and leads to a versatile framework covering general compressible fluid problems. We establish first higher-integrability estimates for the mass density and the total energy. Next, we use arguments from the theory of compensated compactness and Young measures, extended here to sequences of solutions with finite mass and total energy. The third ingredient of the proof is a characterization of the unbounded support of entropy admissible Young measures. This requires the study of singular products involving measures and principal values.
216 - Anxo Biasi 2021
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence of smooth solutions that vanish at infinity and do not have vacuum regions was recently proved and, in this paper, we provide the first construction of such smooth profiles, the first characterization of their spectrum of radial perturbations as well as some endpoints of unstable directions. Numerical simulations of the Euler equations provide evidence that one of these endpoints is a shock formation that happens before the singularity at the origin, showing that the implosion process is unstable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا