Do you want to publish a course? Click here

Deconstructing the Antlia cluster core

254   0   0.0 ( 0 )
 Added by Juan Pablo Caso
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present literature does not give a satisfactory answer to the question about the nature of the Antlia galaxy cluster. The radial velocities of galaxies found in the region around the giant ellipticals NGC 3258/3268 range from about 1000 km/s to 4000 km/s. We characterise this region and its possible kinematical and population substructure. We have obtained VLT--VIMOS multi-object spectra of the galaxy population in the inner part of the Antlia cluster and measure radial velocities for 45 potential members. We supplement our galaxy sample with literature data, ending up with 105 galaxy velocities. We find a large radial velocity dispersion for the entire sample as reported in previous papers. However, we find three groups at about 1900 km/s, 2800 km/s, and 3700 km/s, which we interpret as differences in the recession velocities rather than peculiar velocities. The high radial velocity dispersion of galaxies in the Antlia region reflects a considerable extension along the line of sight.



rate research

Read More

77 - J. P. Calderon 2020
We present an extension of our previous research on the early-type galaxy population of the Antlia cluster (d ~ 35 Mpc), achieving a total coverage of ~ 2.6 deg x deg and performing surface photometry for ~300 galaxies, 130 of which are new uncatalogued ones. Such new galaxies mainly fall in the low surface brightness (LSB) regime, but there are also some lenticulars (S0) which support the existence of unique functions that connect bright and dwarf galaxies in the scaling relations. We analyse the projected spatial distribution of galaxies up to a distance of ~800 kpc from NGC 3268, the adopted centre, as well as the radial velocity distribution and the correlation between galaxy colour and effective radius with the projected spatial distribution. We also obtain the luminosity function of the early-type galaxies and the distribution of stellar masses using the T1-band magnitudes and adopted mass-luminosity ratios. Additionally, we correlate the central galaxy distribution with an X-ray emission map from the literature. Based on the analysis of the radial velocities and galaxy colour distributions, we find that galaxies redder than the colour-magnitude relation (CMR) have a velocity distribution strongly concentrated towards the values of the dominant galaxies and are homogeneously distributed throughout the cluster. Those bluer than the CMR, in turn, have a much more extended radial velocity distribution and are concentrated towards the centre of the cluster. We also identify 12 candidates to ultra diffuse galaxies (UDG), that seem to be split into two families, and speculate about their origins in the context of the cluster structure.
We present preliminary results of the search for Ultra-compact dwarf galaxies in the central region of the Antlia cluster. This new kind of stellar system has brightness, mass and size between those observed in globular clusters and early-type dwarf galaxies, but their origin is not well understood yet.
130 - L. K. Haikala 2020
An intriguing silhouette of a small dust patch can be seen against the disk of the S0 galaxy NGC 3269 in the Antlia cluster in optical images. The images do not provide any clue as to whether the patch is a local Jupiter mass-scale cloudlet or a large extragalactic dust complex. We aim to resolve the nature of this object: is it a small Galactic cloudlet or an extragalactic dust complex? ALMA and APEX spectroscopy and Gemini GMOS long-slit spectroscopy were used to measure the velocity of the patch and the NGC 3269 disk radial velocity curve. A weak 16$pm$2.5 km/s wide $^{12}$CO (2-1) T$_{MB}$ 19$pm$2.5 mK line in a 2.0 by 2.12 beam associated with the object was detected with ALMA. The observed heliocentric velocity, V$_r$,hel = 3878$pm$5.0km/s, immediately establishes the extragalactic nature of the object. The patch velocity is consistent with the velocity of the nucleus of NGC 3269, but not with the radial velocity of the NGC 3269 disk of the galaxy at its position. The $sim$4 angular size of the patch corresponds to a linear size of $sim$1 kpc at the galaxys Hubble distance of (d/50.7 Mpc)$^2$ Msun, while the attenuation derived from the optical spectrum implies a dust mass of $sim$2.6x10$^4$ (d/50.7 Mpc)$^2$ Msun. The derived attenuation ratio A$_B$/(A$_B$-A$_R$) of 1.6$pm$0.11 is substantially lower than the corresponding value for the mean Milky Way extinction curve for point sources (2.3). We established the extragalactic nature of the patch, but its origin remains elusive. One possibility is that the dust patch is left over from the removal of interstellar matter in NGC 3269 through the interaction with its neighbour, NGC 3268.
We present the first results of a project aimed to study the galaxy population of the Antlia cluster, the third nearest galaxy cluster after Virgo and Fornax. The observations for the Antlia project consist of Washington wide-field images taken with the MOSAIC camera mounted at the prime focus of the CTIO 4-m Blanco telescope. Our preliminary results correspond to the identification and classification of dwarf galaxies in the central cluster region, extending the list of Ferguson & Sandage (1990). The final aim of our project is to study the luminosity function, morphology and structural parameters of dwarf galaxies in the Antlia cluster with a more complete sample.
In the core of the Fornax cluster, on the West side of NGC1399, we have detected a previously unknown region of intra-cluster light (ICL). It is made up by several faint ($mu_r simeq 28 - 29$~mag/arcsec$^2$) {it patches} of diffuse light. The bulk of the ICL is located in between the three bright galaxies in the core, NGC1387, NGC1379 and NGC1381, at $10leq R leq40$~arcmin ($sim 58 - 230$~kpc) from the central galaxy NGC~1399. We show that the ICL is the counterpart in the diffuse light of the known over-density in the population of blue globular clusters (GCs). The total g-band luminosity of the ICL is $L_gsimeq 8.3 times 10^{9}$ $L_{odot}$, which is $sim5%$ of the total luminosity of NGC1399. This is consistent with the fraction of the blue GCs in the same region of the cluster. The ICL has $g-r sim 0.7$~mag, which is similar to the colors in the halo of the bright galaxies in the cluster core. The new findings were compared with theoretical predictions for the ICL formation and they support a scenario in which the intra-cluster population detected in the core of the Fornax cluster is build up by the tidal stripping of material (stars and GCs) from galaxy outskirts in a close passage with the cD. Moreover, the diffuse form of the ICL and its location close to the core of the cluster is expected in a dynamically evolved cluster as Fornax.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا