No Arabic abstract
In the core of the Fornax cluster, on the West side of NGC1399, we have detected a previously unknown region of intra-cluster light (ICL). It is made up by several faint ($mu_r simeq 28 - 29$~mag/arcsec$^2$) {it patches} of diffuse light. The bulk of the ICL is located in between the three bright galaxies in the core, NGC1387, NGC1379 and NGC1381, at $10leq R leq40$~arcmin ($sim 58 - 230$~kpc) from the central galaxy NGC~1399. We show that the ICL is the counterpart in the diffuse light of the known over-density in the population of blue globular clusters (GCs). The total g-band luminosity of the ICL is $L_gsimeq 8.3 times 10^{9}$ $L_{odot}$, which is $sim5%$ of the total luminosity of NGC1399. This is consistent with the fraction of the blue GCs in the same region of the cluster. The ICL has $g-r sim 0.7$~mag, which is similar to the colors in the halo of the bright galaxies in the cluster core. The new findings were compared with theoretical predictions for the ICL formation and they support a scenario in which the intra-cluster population detected in the core of the Fornax cluster is build up by the tidal stripping of material (stars and GCs) from galaxy outskirts in a close passage with the cD. Moreover, the diffuse form of the ICL and its location close to the core of the cluster is expected in a dynamically evolved cluster as Fornax.
The formation of Low mass X-ray binaries (LMXB) is favored within dense stellar systems such as Globular Clusters (GCs). The connection between LMXB and Globular Clusters has been extensively studied in the literature, but these studies have always been restricted to the innermost regions of galaxies. We present a study of LMXB in GCs within the central 1.5 deg^2 of the Fornax cluster with the aim of confirming the existence of a population of LMXB in intra-cluster GCs and understand if their properties are related to the host GCs, to the environment or/and to different formation channels.
Based on archival {it Chandra} observations with a total exposure of 1.3 Ms, we study X-ray point sources in the Fornax cluster of galaxies, with the primary aim of searching for intra-cluster X-ray source populations. We detect 1177 point sources out to a projected radius of $sim$30 arcmin ($sim$180 kpc) from the cluster center and down to a limiting 0.5--8 keV luminosity of $sim3times10^{37}{rm~erg~s^{-1}}$. We construct source surface density profile, after excluding sources associated with foreground stars, known globular clusters, ultra-compact dwarfs and galactic nuclei. From this profile we statistically identify $sim$183 excess sources that are not associated with the bulk stellar content of the individual member galaxies of Fornax, nor with the cosmic X-ray background. Taking into account Poisson error and cosmic variance, the cumulative significance of this excess is at $gtrsim 2,sigma$ level (with a maximum of 3.6,$sigma$) outside three effective radii of the central giant elliptical, NGC,1399. The luminosity function of the excess sources is found to be significantly steeper than that of the GC-hosting sources (presumably low-mass X-ray binaries [LMXBs]), disfavoring the possibility that unidentified GCs are primarily responsible for the excess. We show that a large fraction of the excess can be related to the extended stellar halo of NGC,1399 and/or the diffuse intra-cluster light, thus providing strong evidence for the presence of intra-cluster X-ray sources in Fornax, the second unambiguous case for a galaxy cluster after Virgo. Other possible origins of the excess, including supernova-kicked LMXBs and stripped nucleated dwarf galaxies are discussed.
We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 hrs of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presence of an extensive pair of ellipsoidal cavities along the East and West directions within the central region < 20 kpc. Detection of bright rims around the cavities suggested that the radio lobes displaced X-ray emitting hot gas forming shell-like structures. The total cavity power (mechanical power) that directly heated the surrounding gas and cooling luminosity of the cluster were estimated to be ~2.27 x 10^{45} ergs and 3.5 x 10^{44} ergs, respectively. Comparable values of cavity power and cooling luminosity of ZwCL 2701 suggested that the mechanical power of the AGN outburst is large enough to balance the radiative cooling in the system. The star formation rate derived from the H_alpha luminosity was found to be ~0.60 M_sun yr^{-1} which is about three orders of magnitude lower than the cooling rate of ~196 M_sun yr^{-1}. Detection of the floor in entropy profile of ZwCl 2701 suggested the presence of an alternative heating mechanism at the centre of the cluster. Lower value of the ratio (~10^{-2}) between black hole mass accretion rate and Eddington mass accretion rate suggested that launching of jet from the super massive black hole is efficient in ZwCl 2701. However, higher value of ratio (~10^{3}) between black hole mass accretion rate and Bondi accretion rate indicated that the accretion rate required to create cavities is well above the Bondi accretion rate.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC population of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
We report the discovery of a complex extended density enhancement in the Globular Clusters (GCs) in the central $sim 0.5(^{circ})^2$ ($sim 0.06$ Mpc$^2$) of the Fornax cluster, corresponding to $sim 50%$ of the area within 1 core radius. This overdensity connects the GC system of NGC1399 to most of those of neighboring galaxies within $sim 0.6^{circ}$ ($sim 210$ kpc) along the W-E direction. The asymmetric density structure suggests that the galaxies in the core of the Fornax cluster experienced a lively history of interactions that have left a clear imprint on the spatial distribution of GCs. The extended central dominant structure is more prominent in the distribution of blue GCs, while red GCs show density enhancements that are more centrally concentrated on the host galaxies. We propose that the relatively small-scale density structures in the red GCs are caused by galaxy-galaxy interactions, while the extensive spatial distribution of blue GCs is due to stripping of GCs from the halos of core massive galaxies by the Fornax gravitational potential. Our investigations is based on density maps of candidate GCs extracted from the multi-band VLT Survey Telescope (VST) survey of Fornax (FDS), identified in a three-dimensional color space and further selected based on their $g$-band magnitude and morphology.