A recent proposal was made for a large representation rank limit for which the expectation values of N = 4 super Yang-Mills Wilson loops are given by the exponential of the 1-loop result. We verify the validity of this exponentiation in the strong coupling limit using the holographic D3-brane description for straight Wilson loops following an arbitrary internal space trajectory.
We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed. In addition, we explore some analytic continuation of a parameter $gamma$ that characterizes the internal space separation. This enables a ladder limit in which ladder resummation and string theory computations precisely agree in the strong coupling limit. Finally, we find a critical value of $gamma$ for which the correlator is supersymmetric and ladder diagrams can be exactly resummed for any value of the coupling constant.
We consider the 1/2 BPS circular Wilson loop in a generic N=2 SU(N) SYM theory with conformal matter content. We study its vacuum expectation value, both at finite $N$ and in the large-N limit, using the interacting matrix model provided by localization results. We single out some families of theories for which the Wilson loop vacuum expectation values approaches the N=4 result in the large-N limit, in agreement with the fact that they possess a simple holographic dual. At finite N and in the generic case, we explicitly compare the matrix model result with the field-theory perturbative expansion up to order g^8 for the terms proportional to the Riemann value zeta(5), finding perfect agreement. Organizing the Feynman diagrams as suggested by the structure of the matrix model turns out to be very convenient for this computation.
The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson loop appears within EST as a two-loop correction. Ultraviolet divergences of this two-loop correction for polygonal contours can be renormalized using an analytical regularization constructed in terms of Schwarz-Christoffel mapping. In the case of triangular Wilson loops this method leads to a simple final expression for the $L^{-2}$ term.
There is substantial evidence that string theory on AdS_5 x S_5 is a holographic theory in which the number of degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe bulk physics using only surface degrees of freedom is not well understood. A particularly paradoxical situation involves an event deep in the interior of the bulk space. The event must be recorded in the (Schroedinger Picture) state vector of the boundary theory long before a signal, such as a gravitational wave, can propagate from the event to the boundary. In a previous paper with Polchinski, we argued that the precursor operators which carry information stored in the wave during the time when it vanishes in a neighborhood of the boundary are necessarily non-local. In this paper we argue that the precursors cannot be products of local gauge invariant operators such as the energy momentum tensor. In fact gauge theories have a class of intrinsically non-local operators which cannot be built from local gauge invariant objects. These are the Wilson loops. We show that the precursors can be identified with Wilson loops whose spatial size is dictated by the UV-IR connection.
Diego H. Correa
,Fidel I. Schaposnik Massolo
.
(2015)
.
"Ladder exponentiation for generic large symmetric representation Wilson loops"
.
Fidel I. Schaposnik Massolo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا