The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson loop appears within EST as a two-loop correction. Ultraviolet divergences of this two-loop correction for polygonal contours can be renormalized using an analytical regularization constructed in terms of Schwarz-Christoffel mapping. In the case of triangular Wilson loops this method leads to a simple final expression for the $L^{-2}$ term.
In the framework of effective string theory (EST), the asymptotic behavior of a large Wilson loop in confining gauge theories can be expressed via Laplace determinant with Dirichlet boundary condition on the Wilson contour. For a general polygonal region, Laplace determinant can be computed using the conformal anomaly and Schwarz-Christoffel transformation. One can construct ratios of polygonal Wilson loops whose large-size limit can be expressed via computable Laplace determinants and is independent of the (confining) gauge group. These ratios are computed for hexagon polygons both in EST and by Monte Carlo (MC) lattice simulations for the tree-dimensional lattice Z2 gauge theory (dual to Ising model) near its critical point. For large hexagon Wilson loops a perfect agreement is observed between the asymptotic EST expressions and the lattice MC results.
We propose and discuss a new approach to the analysis of the correlation functions which contain light-like Wilson lines or loops, the latter being cusped in addition. The objects of interest are therefore the light-like Wilson null-polygons, the soft factors of the parton distribution and fragmentation functions, high-energy scattering amplitudes in the eikonal approximation, gravitational Wilson lines, etc. Our method is based on a generalization of the universal quantum dynamical principle by J. Schwinger and allows one to take care of extra singularities emerging due to light-like or semi-light-like cusps. We show that such Wilson loops obey a differential equation which connects the area variations and renormalization group behavior of those objects and discuss the possible relation between geometrical structure of the loop space and area evolution of the light-like cusped Wilson loops.
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. Due to the self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The new effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. The original dimensionful gauge coupling plays a role of mass and is also logarithmically renormalized. Comments on the unitarity of the resulting theory are given.
We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one involves arbitrary curves on the two dimensional sphere. In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class, but we point out more special cases which were not known before. They could provide further tests of the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by localization
We present calculations of certain limits of scheme-independent series expansions for the anomalous dimensions of gauge-invariant fermion bilinear operators and for the derivative of the beta function at an infrared fixed point in SU($N_c$) gauge theories with fermions transforming according to two different representations. We first study a theory with $N_f$ fermions in the fundamental representation and $N_{f}$ fermions in the adjoint or symmetric or antisymmetric rank-2 tensor representation, in the limit $N_c to infty$, $N_f to infty$ with $N_f/N_c$ fixed and finite. We then study the $N_c to infty$ limit of a theory with fermions in the adjoint and rank-2 symmetric or antisymmetric tensor representations.