Do you want to publish a course? Click here

Distributed Estimation of Graph 4-Profiles

321   0   0.0 ( 0 )
 Added by Ethan R. Elenberg
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We present a novel distributed algorithm for counting all four-node induced subgraphs in a big graph. These counts, called the $4$-profile, describe a graphs connectivity properties and have found several uses ranging from bioinformatics to spam detection. We also study the more complicated problem of estimating the local $4$-profiles centered at each vertex of the graph. The local $4$-profile embeds every vertex in an $11$-dimensional space that characterizes the local geometry of its neighborhood: vertices that connect different clusters will have different local $4$-profiles compared to those that are only part of one dense cluster. Our algorithm is a local, distributed message-passing scheme on the graph and computes all the local $4$-profiles in parallel. We rely on two novel theoretical contributions: we show that local $4$-profiles can be calculated using compressed two-hop information and also establish novel concentration results that show that graphs can be substantially sparsified and still retain good approximation quality for the global $4$-profile. We empirically evaluate our algorithm using a distributed GraphLab implementation that we scaled up to $640$ cores. We show that our algorithm can compute global and local $4$-profiles of graphs with millions of edges in a few minutes, significantly improving upon the previous state of the art.



rate research

Read More

We study the problem of approximating the $3$-profile of a large graph. $3$-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel concept of $3$-profile sparsifiers: sparse graphs that can be used to approximate the full $3$-profile counts for a given large graph. Further, we study the problem of estimating local and ego $3$-profiles, two graph quantities that characterize the local neighborhood of each vertex of a graph. Our algorithm is distributed and operates as a vertex program over the GraphLab PowerGraph framework. We introduce the concept of edge pivoting which allows us to collect $2$-hop information without maintaining an explicit $2$-hop neighborhood list at each vertex. This enables the computation of all the local $3$-profiles in parallel with minimal communication. We test out implementation in several experiments scaling up to $640$ cores on Amazon EC2. We find that our algorithm can estimate the $3$-profile of a graph in approximately the same time as triangle counting. For the harder problem of ego $3$-profiles, we introduce an algorithm that can estimate profiles of hundreds of thousands of vertices in parallel, in the timescale of minutes.
Betweenness centrality is a graph parameter that has been successfully applied to network analysis. In the context of computer networks, it was considered for various objectives, ranging from routing to service placement. However, as observed by Maccari et al. [INFOCOM 2018], research on betweenness centrality for improving protocols was hampered by the lack of a usable, fully distributed algorithm for computing this parameter. We resolve this issue by designing an efficient algorithm for computing betweenness centrality, which can be implemented by minimal modifications to any distance-vector routing protocol based on Bellman-Ford. The convergence time of our implementation is shown to be proportional to the diameter of the network
104 - Yannic Maus 2021
In this paper we present a deterministic CONGEST algorithm to compute an $O(kDelta)$-vertex coloring in $O(Delta/k)+log^* n$ rounds, where $Delta$ is the maximum degree of the network graph and $1leq kleq O(Delta)$ can be freely chosen. The algorithm is extremely simple: Each node locally computes a sequence of colors and then it tries colors from the sequence in batches of size $k$. Our algorithm subsumes many important results in the history of distributed graph coloring as special cases, including Linials color reduction [Linial, FOCS87], the celebrated locally iterative algorithm from [Barenboim, Elkin, Goldenberg, PODC18], and various algorithms to compute defective and arbdefective colorings. Our algorithm can smoothly scale between these and also simplifies the state of the art $(Delta+1)$-coloring algorithm. At the cost of losing the full algorithms simplicity we also provide a $O(kDelta)$-coloring algorithm in $O(sqrt{Delta/k})+log^* n$ rounds. We also provide improved deterministic algorithms for ruling sets, and, additionally, we provide a tight characterization for one-round color reduction algorithms.
We investigate the behavior of a simple majority dynamics on networks of agents whose interaction topology exhibits a community structure. By leveraging recent advancements in the analysis of dynamics, we prove that, when the states of the nodes are randomly initialized, the system rapidly and stably converges to a configuration in which the communities maintain internal consensus on different states. This is the first analytical result on the behavior of dynamics for non-consensus problems on non-complete topologies, based on the first symmetry-breaking analysis in such setting. Our result has several implications in different contexts in which dynamics are adopted for computational and biological modeling purposes. In the context of Label Propagation Algorithms, a class of widely used heuristics for community detection, it represents the first theoretical result on the behavior of a distributed label propagation algorithm with quasi-linear message complexity. In the context of evolutionary biology, dynamics such as the Moran process have been used to model the spread of mutations in genetic populations [Lieberman, Hauert, and Nowak 2005]; our result shows that, when the probability of adoption of a given mutation by a node of the evolutionary graph depends super-linearly on the frequency of the mutation in the neighborhood of the node and the underlying evolutionary graph exhibits a community structure, there is a non-negligible probability for species differentiation to occur.
55 - Marco Canini 2017
By introducing programmability, automated verification, and innovative debugging tools, Software-Defined Networks (SDNs) are poised to meet the increasingly stringent dependability requirements of todays communication networks. However, the design of fault-tolerant SDNs remains an open challenge. This paper considers the design of dependable SDNs through the lenses of self-stabilization - a very strong notion of fault-tolerance. In particular, we develop algorithms for an in-band and distributed control plane for SDNs, called Renaissance, which tolerate a wide range of (concurrent) controller, link, and communication failures. Our self-stabilizing algorithms ensure that after the occurrence of an arbitrary combination of failures, (i) every non-faulty SDN controller can reach any switch (or another controller) in the network within a bounded communication delay (in the presence of a bounded number of concurrent failures) and (ii) every switch is managed by at least one controller (as long as at least one controller is not faulty). We evaluate Renaissance through a rigorous worst-case analysis as well as a prototype implementation (based on OVS and Floodlight), and we report on our experiments using Mininet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا