No Arabic abstract
Betweenness centrality is a graph parameter that has been successfully applied to network analysis. In the context of computer networks, it was considered for various objectives, ranging from routing to service placement. However, as observed by Maccari et al. [INFOCOM 2018], research on betweenness centrality for improving protocols was hampered by the lack of a usable, fully distributed algorithm for computing this parameter. We resolve this issue by designing an efficient algorithm for computing betweenness centrality, which can be implemented by minimal modifications to any distance-vector routing protocol based on Bellman-Ford. The convergence time of our implementation is shown to be proportional to the diameter of the network
Dense granular systems subjected to an imposed shear stress undergo stick-slip dynamics with systematic patterns of dilation-compaction. During each stick phase, as the frictional strength builds up, the granular system dilates to accommodate shear strain, developing stronger force networks. During each slip event, when the stored energy is released, particles experience large rearrangements and the granular network can significantly change. Here, we use numerical simulations of 3D, sheared frictional packings to show that the mean betweenness centrality -- a property of network of interparticle connections -- follows consistent patterns during the stick-slip dynamics, showing sharp spikes at each slip event. We identify the source of this behavior as arising from the connectivity and contact arrangements of granular network during dilation-compaction cycles, and find that a lower potential for connection between particles leads to an increase of mean betweenness centrality in the system. Furthermore, we show that at high confinements, few particles lose contact during slip events, leading to a smaller change in granular connectivity and betweenness centrality.
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest path between them. In this paper we present betweenness centrality of some important classes of graphs.
Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algorithm runs in O(nm) time. The problems of efficiency and scalability are exacerbated in a dynamic setting, where the input is an evolving graph seen edge by edge, and the goal is to keep the betweenness centrality up to date. In this paper we propose the first truly scalable algorithm for online computation of betweenness centrality of both vertices and edges in an evolving graph where new edges are added and existing edges are removed. Our algorithm is carefully engineered with out-of-core techniques and tailored for modern parallel stream processing engines that run on clusters of shared-nothing commodity hardware. Hence, it is amenable to real-world deployment. We experiment on graphs that are two orders of magnitude larger than previous studies. Our method is able to keep the betweenness centrality measures up to date online, i.e., the time to update the measures is smaller than the inter-arrival time between two consecutive updates.
In this paper, we propose a novel distributed alternating direction method of multipliers (ADMM) algorithm with synergetic communication and computation, called SCCD-ADMM, to reduce the total communication and computation cost of the system. Explicitly, in the proposed algorithm, each node interacts with only part of its neighboring nodes, the number of which is progressively determined according to a heuristic searching procedure, which takes into account both the predicted convergence rate and the communication and computation costs at each iteration, resulting in a trade-off between communication and computation. Then the node chooses its neighboring nodes according to an importance sampling distribution derived theoretically to minimize the variance with the latest information it locally stores. Finally, the node updates its local information with a new update rule which adapts to the number of communication nodes. We prove the convergence of the proposed algorithm and provide an upper bound of the convergence variance brought by randomness. Extensive simulations validate the excellent performances of the proposed algorithm in terms of convergence rate and variance, the overall communication and computation cost, the impact of network topology as well as the time for evaluation, in comparison with the traditional counterparts.
Centrality rankings such as degree, closeness, betweenness, Katz, PageRank, etc. are commonly used to identify critical nodes in a graph. These methods are based on two assumptions that restrict their wider applicability. First, they assume the exact topology of the network is available. Secondly, they do not take into account the activity over the network and only rely on its topology. However, in many applications, the network is autonomous, vast, and distributed, and it is hard to collect the exact topology. At the same time, the underlying pairwise activity between node pairs is not uniform and node criticality strongly depends on the activity on the underlying network. In this paper, we propose active betweenness cardinality, as a new measure, where the node criticalities are based on not the static structure, but the activity of the network. We show how this metric can be computed efficiently by using only local information for a given node and how we can find the most critical nodes starting from only a few nodes. We also show how this metric can be used to monitor a network and identify failed nodes.We present experimental results to show effectiveness by demonstrating how the failed nodes can be identified by measuring active betweenness cardinality of a few nodes in the system.