Do you want to publish a course? Click here

Ehrenfest approach to open double-well dynamics

101   0   0.0 ( 0 )
 Added by Roberto Onofrio
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider an Ehrenfest approximation for a particle in a double-well potential in the presence of an external environment schematized as a finite resource heat bath. This allows us to explore how the limitations in the applicability of Ehrenfest dynamics to nonlinear systems are modified in an open system setting. Within this framework, we have identified an environment-induced spontaneous symmetry breaking mechanism, and we argue that the Ehrenfest approximation becomes increasingly valid in the limit of strong coupling to the external reservoir, either in the form of increasing number of oscillators or increasing temperature. The analysis also suggests a rather intuitive picture for the general phenomenon of quantum tunneling and its interplay with classical thermal activation processes, which may be of relevance in physical chemistry, ultracold atom physics, and fast-switching dynamics such as in superconducting digital electronics.



rate research

Read More

We treat the double well quantum oscillator from the standpoint of the Ehrenfest equation but in a manner different from Pattanayak and Schieve. We show that for short times there can be chaotic motion due to quantum fluctuations, but over sufficiently long times the behaviour is normal.
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with system--environment correlations included. This exact dynamics is in the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For explicit calculations, we also develop a weak-correlation expansion formalism that allows us to perform systematic perturbative approximations. This expansion provides approximate master equations which can feature advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master equation, which is different from existing approaches. We compare our equations with corresponding standard weak-coupling equations by two examples, where our correlation picture formalism is more accurate, or at least as accurate as weak-coupling equations.
184 - Zhao Liu , Hongli Guo , Shu Chen 2011
We study the ground state properties of bosons in a tilted double-well system. We use fidelity susceptibility to identify the possible ground state transitions under different tilt values. For a very small tilt (for example $10^{-10}$), two transitions are found. For a moderate tilt (for example $10^{-3}$), only one transition is found. For a large tilt (for example $10^{-1}$), no transition is found. We explain this by analyzing the spectrum of the ground state. The quantum discord and total correlation of the ground state under different tilts are also calculated to indicate those transitions. In the transition region, both quantities have peaks decaying exponentially with particle number $N$. This means for a finite-size system the transition region cannot be explained by the mean-field theory, but in the large-$N$ limit it can be.
By using a usual instanton method we obtain the energy splitting due to quantum tunneling through the triple well barrier. It is shown that the term related to the midpoint of the energy splitting in propagator is quite different from that of double well case, in that it is proportional to the algebraic average of the frequencies of the left and central wells.
305 - G. Ciaramicoli , I. Marzoli , 2010
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well potential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا